Устройство для излучения радиоволн

Устройство для излучения радиоволн

устройство для приема или излучения радиоволн

• приемное устройство, часть теле- и радиоустановки

• фигура в городках

• «волноуловитель» на крыше

• именно так в древнем Риме называли рею мачты, взобравшись на которую обнаруживали приближение противника

• скажите по-латински «мачта, рея»

• рогатина, обосновавшаяся на крыше

• «удочка» для ловли радиоволн

• «рогатина» для охоты на телевизионные каналы

• «стоит на крыше верхолаз и ловит новости для нас» (загадка)

• «стою на крыше всех труб выше» (загадка)

• телевизионный орган чувств

• установка для приема и излучения радиоволн

• устройство для излучения и приема радиоволн

• многочисленные подвижные головные придатки у членистоногих

Излуч е ние и приём радиов о лн. Излучение радиоволн — процесс возбуждения бегущих электромагнитных волн радиодиапазона в пространстве, окружающем источник колебаний тока или заряда. При этом энергия источника преобразуется в энергию распространяющихся в пространстве электромагнитных волн. Приём радиоволн является процессом, обратным процессу излучения. Он состоит в преобразовании энергии электромагнитных волн в энергию переменного тока. И. и п. р. осуществляются с помощью передающих и приёмных антенн.

Излучение радиоволн. Источником первичных электрических колебаний могут быть переменные токи, текущие по проводникам, переменные поля и т. п. Однако переменные токи относительно низкой частоты (например, промышленной частоты 50 гц) для излучения непригодны: на этих частотах нельзя создать эффективный излучатель. Действительно, если электрические колебания происходят, например, в катушке индуктивности, размеры которой малы по сравнению с длиной волны l , соответствующей частоте колебаний тока, текущего в катушке, для каждого участка с одним направлением тока, например А (рис. 1), существует другой участок В, удалённый от А на расстояние, меньшее, чем l /2, в котором в тот же момент времени направление тока противоположно. На больших расстояниях от витка волны, излученные элементами А и В, ослабляют друг друга. Так как виток состоит из таких пар противофазных элементов, то он, а следовательно вся катушка, излучает плохо. Также плохо излучает колебательный контур, содержащий катушку индуктивности и конденсатор. В каждый момент времени заряды на обкладках конденсатора равны по величине, противоположны по знаку и удалены друг от друга на расстояние, значительно меньшее, чем l /2.

Из сказанного следует, что для эффективного излучения радиоволн необходима незамкнутая (открытая) цепь, в которой либо нет участков с противофазными колебаниями тока или заряда, либо расстояние между ними не мало по сравнению с l /2. Если размеры цепи таковы, что время распространения изменений электромагнитного поля в ней сравнимо с периодом колебаний тока или заряда (скорость распространения возмущений конечна), то условия квазистационарности не выполняются (см. Квазистационарный процесс) и часть энергии источника уходит в виде электромагнитных волн. Для практических целей обычно применяют электромагнитные волны с l l . Для того чтобы диполь излучал значительную долю подводимой к нему мощности, его длина не должна быть мала по сравнению с l /2. С этим связана трудность излучения очень длинных волн. Если l подобрано правильно и потери энергии на нагрев проводников диполя и линии малы, то преобладающая доля мощности источника тратится на излучение. Таким образом, диполь является потребителем мощности источника, подобно включенному в конец линии активному сопротивлению, потребляющему подводимую мощность. В этом смысле диполь обладает сопротивлением излучения Rи, равным тому активному сопротивлению, в котором потреблялась бы такая же мощность.

Описанный выше диполь является простейшей передающей антенной и называется симметричным вибратором. Впервые такой вибратор использовал Г. Герц (1888) в опытах, обнаруживших существование радиоволн. Электрические колебания в диполе Герца (см. Герца вибратор) возбуждались с помощью искрового разряда — единственного известного в то время источника электрических колебаний. Наряду с симметричным вибратором применяется (для более длинных волн) несимметричный вибратор (рис. 6), возбуждаемый у основания и излучающий равномерно в горизонтальной плоскости.

Наряду с проволочными антеннами (проволочными вибраторами) существуют и другие виды излучателей радиоволн. Широкое применение получила магнитная антенна. Она представляет собой стержень из магнитного материала с высокой магнитной проницаемостью m , на который намотана катушка из тонкого провода. Силовые линии магнитного поля магнитной антенны повторяют картину силовых линий электрического поля проволочного диполя (рис. 7, а, б), что обусловлено принципом двойственности.

Если в стенках радиоволновода или объёмного резонатора, где текут переменные поверхностные токи сверхвысоких частот, прорезать щель так, чтобы она пересекла направление тока, то распределение токов резко искажается, экранировка нарушается и электромагнитная энергия излучается наружу. Распределение полей щелевого излучателя подобно распределению полей магнитной антенны. Поэтому щелевой излучатель называется магнитным диполем (рис. 7, в, г; см. также Щелевая антенна). Диаграмма направленности магнитного и щелевого излучателей, так же как и электрического диполя, представляет собой тороид.

Более направленное излучение создают антенны, состоящие из нескольких проволочных или щелевых излучателей. Это — результат интерференции радиоволн, излучаемых отдельными излучателями. Если токи, питающие их, имеют одинаковые амплитуду и фазу (равномерное синфазное возбуждение), то на достаточно далёком расстоянии в направлении, перпендикулярном излучающей поверхности, волны от отдельных излучателей имеют одинаковые фазы и дают максимум излучения. Поле, созданное в других направлениях, значительно слабее. Некоторое увеличение напряжённости поля имеет место в тех направлениях, где разность фаз волн, приходящих от крайних излучателей, равна (n + 1) p /2, где n — целое число. В этом случае сечение диаграммы направленности плоскостью содержит ряд лепестков (рис. 8), наибольший из которых называется главным и соответствует максимуму излучения, остальные называются боковыми.

В современной антенной технике применяются антенные решётки, содержащие до 1000 излучателей. Поверхность, на которой они расположены, называется апертурой (раскрывом) антенны и может иметь любую форму. Задавая различное распределение амплитуд и фаз токов на апертуре, можно получить любую форму диаграммы направленности. Синфазное возбуждение излучателей, образующих плоскую решётку, позволяет получить очень высокую направленность излучения, а изменение распределения тока на апертуре даёт возможность изменять форму диаграммы направленности.

Читайте также:  Звуковая система для телевизора

Для повышения направленности излучения, которое характеризуется шириной главного лепестка, необходимо увеличивать размеры антенны. Связь между шириной главного лепестка q , наибольшим размером апертуры L и излучаемой длиной волны l определяется формулами:

для синфазного возбуждения и

если излучатели расположены вдоль некоторой оси, а сдвиг фаз в них подобран так, что максимум излучения направлен вдоль этой оси (рис. 9). С — постоянные, зависящие от распределения амплитуды токов по апертуре.

Если радиоволновод постепенно расширяется к открытому концу в виде воронки или рупора (рис. 10), то волна в волноводе постепенно преобразуется в волну, характерную для свободного пространства. Такая рупорная антенна даёт направленное излучение.

Очень высокая направленность излучения (до долей градуса на дециметровых и более коротких волнах) достигается с помощью зеркальных и линзовых антенн. В них благодаря процессам отражения и преломления сферический фронт волны, излучаемой электрическим или магнитным диполем либо рупорным излучателем, преобразуется в плоский. Однако из-за дифракции волн в этом случае диаграмма также имеет главный и боковые лепестки направленности. Зеркальная антенна представляет собой металлическое зеркало 1, чаще в виде части параболоида вращения или параболического цилиндра, в фокусе которого находится первичный излучатель (рис. 11). Линзы для радиоволн представляют собой трёхмерные решётки из металлических шариков, стерженьков и т.п. (искусственные диэлектрики) или набор прямоугольных волноводов.

Приём радиоволн. Каждая передающая антенна может служить приёмной. Если на электрический диполь действует распространяющаяся в пространстве волна, то её электрическое поле возбуждает в диполе колебания тока, которые затем усиливаются, преобразуются по частоте и воздействуют на выходные приборы. Можно показать, что диаграммы направленности диполя в режимах приёма и передачи одинаковы, т. е. что диполь принимает лучше в тех направлениях, в которых он лучше излучает. Это является общим свойством всех антенн, вытекающим из принципа взаимности: если расположить две антенны — передающую А и приёмную В — в начале и в конце линии радиосвязи, то генератор, питающий антенну А, переключенный в приёмную антенну В, создаёт в приёмном устройстве, переключенном в антенну А, такой же ток, какой, будучи включенным в антенну А, он создаёт в приёмнике, включенном в антенну В. Принцип взаимности позволяет по свойствам передающей антенны определить её характеристики как приёмной.

Энергия, которую диполь извлекает из электромагнитной волны, зависит от соотношения между его длиной l, длиной волны l и углом y между направлением v прихода волны и диполем. Существен также угол j между направлением вектора электрической волны и диполем (рис. 12). Наилучшие условия приёма, при j = 0. При j = p/2 электрический ток в диполе не возбуждается, т. е. приём отсутствует. Если же 0 j p /2, то очевидно, что энергия, извлекаемая приёмной антенной из поля

(Ecos j ) 2 . Иными словами, эта энергия связана с поляризацией приходящей волны. Из сказанного выше следует, что в случае излучающего и принимающего диполей для наилучших условий приёма необходимо, чтобы оба диполя лежали в одной плоскости и чтобы приёмный диполь был перпендикулярен направлению распространения волны. При этом приёмный диполь извлекает из приходящей волны столько энергии, сколько несёт с собой эта волна, проходя через сечение в форме квадрата со стороной равной

Шумы антенны. Приёмная антенна всегда находится в таких условиях, когда на неё, кроме полезного сигнала, воздействуют шумы. Воздух и поверхность Земли вблизи антенны, поглощая энергию, в соответствии с Рэлея — Джинса законом излучения создают электромагнитное излучение. Шумы возникают и за счёт джоулевых потерь в проводниках и диэлектриках подводящих устройств.

Все шумы внешнего происхождения описываются так называемой шумовой, или антенной, температурой TA. Мощность Рш внешних шумов на входе антенны в полосе частот Dn приёмника равна:

(kБольцмана постоянная). На частотах ниже 30 Мгц преобладающую роль играют атмосферные шумы. В области сантиметровых волн решающий вклад вносит излучение поверхности Земли, которое попадает в антенну обычно за счёт боковых лепестков её диаграммы направленности. Поэтому для слабонаправленных антенн антенная температура, обусловленная Землёй, высока; она может достигать 140—250 К; у остронаправленных антенн она составляет обычно 50—80 К, а специальными мерами её можно снизить до 15—20 К.

О конкретных типах антенн, их характеристиках и применении см. в ст. Антенна.

Лит.: Хайкин С. Э., Электромагнитные волны, 2 изд., М. — Л., 1964; Гольдштейн Л. Д., Зернов Н. В., Электромагнитные поля и волны, М., 1956; Рамо С., Уиннери Дж., Поля и волны в современной радиотехнике, пер. с англ., 2 изд., М. — Л., 1950.

Под редакцией Л. Д. Бахража.

Рис. 11. Схема зеркальной антенны: 1 — параболический отражатель; 2 — волновод, соединяющий двухщелевой излучатель 3 с генератором; 4 — образуемый излучателем сферический фронт волны; 5 — плоский фронт волны после отражения от зеркала.

Рис. 1. Виток катушки индуктивности.

Рис. 8. Сечение диаграммы направленности антенны плоскостью.

Рис. 3. Структура электрического Е и магнитного H полей вблизи диполя: пунктир — силовые линии электрического поля; тонкие линии — силовые линии магнитного поля; О — точка наблюдения.

Рис. 4. Мгновенные картины электрических силовых линий вблизи диполя для промежутков времени, отстоящих друг от друга на 1 /8 периода Т колебаний тока.

Рис. 12 к ст. Излучение и приём радиоволн.

Рис. 2. Электрический диполь.

Рис. 10. Cxeмa рупорного излучателя. Стрелками показаны силовые линии электрического поля; точки — силовые линии магнитного поля, перпендикулярные плоскости рисунка, выходящие из его плоскости (крестики — уходящие за плоскость).

Читайте также:  Стейт оф дикей 2 стим

Рис. 7. Сопоставление электрического диполя (а), магнитного (6) и щелевого (в, г) излучателей; 1 — проводник с током; 2 — стержень из материала с высокой магнитной проницаемостью; 3 — металлический экран, в котором прорезана щель; 4 — проводники, идущие от генератора высокочастотных электрических колебаний; 5 — силовые линии электрического поля; 6 — силовые линии магнитного поля.

Рис. 6. Несимметричный вибратор; Г — генератор электрических колебаний.

Рис. 5. Пространственная диаграмма направленности электрического диполя.

Рис. 9. Принцип действия антенны, излучающей вдоль оси системы диполей; S — путь, пройденный волной, на котором отставание фазы компенсируется опережением фазы излучающего тока.

Антенной называется система проводников, служащих для излучения радиоволн на передающей станции и для улавливания радиоволн на приемной станции. Иначе говоря, антенна осуществляет преобразование энергии тока высокой частоты в, энергию радиоволн или, наоборот, преобразует энергию радиоволн в энергию тока высокой частоты.

Впервые антенны в виде полуволнового вибратора и рамки применил Генрих Герц (1888). В дальнейшем в технику антенных устройств большой вклад внесли такие ученые и изобретатели, как А. С. Попов (1895 и позже), М. В. Шулейкин (после 1920), А. А. Пистолькорс, В. В. Татаринов, М. А. Бонч-Бруевич и другие.

В состав антенного устройства во многих случаях, помимо самой антенны, служащей для излучения или приема радиоволн, входит еще фидерная линия, которая служит для передачи с наименьшими потерями электромагнитных волн от передатчика к антенне или от антенны к приемнику. Для правильной работы антенного устройства сами фидерные линии не должны обладать антенным эффектом, т. е. излучать или принимать радиоволны.

Принято разделять антенны на передающие и приемные, хотя принципиальной разницы в устройстве между ними в большинстве случаев нет. Передающая антенна должна излучать в нужном направлении электромагнитные волны с возможно большей энергией. В приемной антенне радиоволны, пришедшие в определенном направлении, должны создавать колебания с возможно большей энергией.

Антенные устройства обладают свойством обратимости. Это значит, что любая передающая антенна, как правило, может работать в качестве приемной и наоборот. Кроме того, если антевна, работающая в качестве передающей, обладает некоторыми свойствами, то подобные же свойства остаются и в случае использования данной антенны для приема. Например, если антенна лучше всего излучает волны в некотором определенном направлении, то она будет принимать лучше всего волны, приходящие с этого же направления. Практически иногда передающие и приемные антенны все же имеют некоторые различия.

Рассмотрим прежде всего элементарные принципы устройства и работы простейших антенн.

Замкнутый колебательный контур, имеющий малые размеры по сравнению с длиной волны, очень плохо излучает электромагнитные волны. Это можно объяснить следующим образом.

Электромагнитные волны излучаются проводником, по которому проходит ток высокой частоты.

Рис.1. Противоположные направления токов в элементах колебательного контура виде петли (рис.1 а), то в двух его половинках токи направлены в противоположные стороны.

Волны, создаваемые этими токами, противоположны по фазе и, если расстояние между проводами d мало по сравнению с длиной волны, то эти волны будут в пространстве взаимно уничтожаться.

Таким образом, провод в виде петли почти не излучает электромагнитные волны. То же можно оказать и о проводе в виде прямоугольного или круглого витка (рис. 1 (б) и (в)), имеющего размеры много меньше длины волны. Токи в противоположных сторонах квадратного витка направлены в разные стороны и волны, создаваемые этими токами, имеют противоположные фазы. В направлении, перпендикулярном к плоскости витка, эти волны взаимно уничтожаются. А в направлении вдоль плоскости витка сдвиг фаз между этими волнами немного отличается от 180°, так как одна из волн проходит лишний путь, равный d, и несколько запаздывает по фазе. Но если сторона витка много меньше длины волны, то запаздывание ничтожно и практически волны, идущие в этом направлении, также взаимно уничтожаются.

У круглого витка малого диаметра каждому данному элементу провода, например элементу А на рис.1 в, соответствует другой диаметрально противоположный элемент (Б на рис.1 б), причем в этих элементах токи направлены в разные стороны. Волны, создаваемые этими элементами, имеют противоположные фазы и практически взаимно уничтожаются.

Если бы размер d составлял заметную часть длины волны (ламбда), то волны, идущие в направлении вдоль плоскости витка от его противоположных сторон, имели бы сдвиг фаз, значительно отличающийся от 180°, так как одна из волн заметно запаздывала бы, и поэтому взаимного уничтожения волн не получалось бы. Только в направлении, перпендикулярном витку, волны шли бы путями одинаковой длины и взаимно уничтожали бы друг друга.

В радиотехнических колебательных контурах, работающих на средних и коротких волнах, витки катушек имеют обычно диаметр порядка нескольких сантиметров, а длина волны измеряется десятками и сотнями метров. При таком соотношении практически можно считать, что каждый виток в отдельности не излучает, а следовательно, и вся катушка в целом также не будет излучать.

Весь контур на этих волнах можно представить как один виток, в противоположных элементах которого токи протекают в разных направлениях. В соединительных проводах АБ и ВГ (рис.1) токи имеют противоположные направления. То же можно сказать и о токах в участках АВ и БГ, т. е. в катушке и в конденсаторе. Так как геометрические размеры контура малы по сравнению с длиной волны, то контур практически излучает очень слабо.

Однако возможно изменить устройство колебательного контура так, что в отдельных его элементах токи будут иметь одинаковое направление в пространстве, т.е. колебания в отдельных элементах контура совпадут по фазе. Тогда волны, создаваемые этими элементами, взаимно не уничтожатся и получится значительное излучение. Это достигается превращением замкнутого контура (рис. 2 а) в открытый контур, т.е. в антенну.

Читайте также:  Как открыть nes игры

Если раздвинуть обкладки конденсатора и развернуть соединительные провода в прямую линию (рис.2 6), то направления токов в этих проводах станут одинаковыми. Подобный контур излучает волны все же недостаточно, так как отсутствует излучение катушкой, и токи, протекающие по обкладкам конденсатора, направлены в противоположные стороны и под прямым углом к токам в соединительных проводах.

Дальнейшее увеличение излучения волн получится, если вытянуть провод катушки в прямую линию и вместо обкладок для создания необходимой емкости применить провода достаточной длины (рис.2 в). Тогда направление токов во всех элементах провода будет одно и то же, т. е. колебания во всех частях провода будут совершаться в одинаковых фазах, и излучение волн станет наибольшим. Таким образом, открытый контур в простейшем случае представляет собой прямолинейный провод. Практически в нем все же обычно оставляют небольшую катушку Lee для связи с генератором (рис.2 г).

Всякий провод обладает собственной индуктивностью и собственной емкостью, распределенными по его длине, а поэтому является своеобразным колебательным контуром, в котором можно получить свободные электрические колебания. На схеме (рис.3 а) в положении 1 переключателя П обе половины провода заряжаются от батареи Б.

Если перевести переключатель в положение 2, то электроны будут двигаться вдоль провода в направлении от нижней его половины к верхней, а затем в обратном направлении, т. е. в проводе возникнут свободные затухающие колебания.

Отдельные фазы колебательного процесса в проводе показаны на (рис.3 б). В верхней части рисунка показано распределение электрического и магнитного полей, а в нижней части — график изменения тока и напряжения в антенне.

Напряжением в какой-либо точке антенны принято называть разность потенциалов между данной точкой и симметрично ей расположенной точкой на второй половине провода. График тока показывает также изменение напряженности магнитногЬ поля, а график напряжения—изменение напряженности электрического поля. На (рис.3 6) график напряжения и соответствующее ему электрическое поле изображены штриховой линией, а график тока и соответствующее ему магнитное поле — сплошной линией.

В начальный момент (0 на рис.3 6) провод обладает потенциальной энергией электрического поля зарядов, сосредоточенных на верхней и нижней половинах провода. Тока еще нет, а разность потенциалов имеет максимальную величину. При возникновении движения электронов вдоль провода ток возрастает, а напряжение уменьшается, и энергия электрического поля переходит в кинетическую энергию магнитного поля, создаваемого током. Через четверть периода электрическое поле заменяется магнитным полем. В этот момент (1 на рис.3 б) ток максимален, а напряжение равно нулю. Затем ток и магнитное поле уменьшаются. Возникает эде самоиндукции, которая поддерживает движение электронов и провод перезаряжается. Энергия переходит из магнитного поля в электрическое. К концу второй четверти периода (момент 2) снова энергия сосредоточена в электрическом поле, но направление поля изменилось на обратное. Далее, в течение следующей половины периода весь процесс повторяется в обратном направлении и восстанавливается первоначальное состояние.

В промежуточные моменты, не изображенные на верхнем чертеже, одновременно существуют электрическое и магнитное поля, так как энергия распределена между обоими полями. Электрическое и магнитное поля имеются вдоль всего провода, причем магнитное поле наиболее сильное в середине провода, где ток наибольшей величины, а на концах провода ток равен нулю и магнитное поле отсутствует.

Открытый контур, представляющий собой прямолинейный провод, в котором могут происходить свободные электрические колебания, называют симметричным вибратором или, короче, просто вибратором, или диполем. Для получения в нем незатухающих колебаний его связывают с генератором, например, при помощи индуктивной связи (рис.4). В простейшем случае антенное устройство для длинных, средних, а иногда и коротких волн может быть выполнено следующим образом. По возможности выше над землей подвешивается сама антенна, т.е. система проводов, играющая роль одной обкладки конденсатора. Второй обкладкой является земля или второй провод, называемый противовесом и подвешенный невысоко над землей.

Такое антенное устройство является несимметричным. Емкость Са между антенной и землей (или противовесом) доходит до десятков или даже сотен пикофарад. Схематически антенные устройства с заземлением и с противовесом показаны на (рис.5 а) я б. На этих же рисунках даны условные обозначения антенны, земли и противовеса, применяемые в радиотехнических схемах.

Литература

  1. Ротхаммель К. Антенны. Том 1. — 11-е издание, 2007
  2. Ротхаммель К. Антенны. Том 2. — 11-е издание, 2007

Дело в том, что в его постановке и выводах произведена подмена, аналогичная подмене в школьной шуточной задачке на сообразительность, в которой спрашивается:
— Cколько яблок на березе, если на одной ветке их 5, на другой ветке — 10 и так далее
При этом внимание учеников намеренно отвлекается от того основополагающего факта, что на березе яблоки не растут, в принципе.

В эксперименте Майкельсона ставится вопрос о движении эфира относительно покоящегося в лабораторной системе интерферометра. Однако, если мы ищем эфир, как базовую материю, из которой состоит всё вещество интерферометра, лаборатории, да и Земли в целом, то, естественно, эфир тоже будет неподвижен, так как земное вещество есть всего навсего определенным образом структурированный эфир, и никак не может двигаться относительно самого себя.

Удивительно, что этот цирковой трюк овладел на 120 лет умами физиков на полном серьезе, хотя его прототипы есть в сказках-небылицах всех народов всех времен, включая барона Мюнхаузена, вытащившего себя за волосы из болота, и призванных показать детям возможные жульничества и тем защитить их во взрослой жизни. Подробнее читайте в FAQ по эфирной физике.

Ссылка на основную публикацию
Установка и настройка ip камеры
Системы видеонаблюдения используются давно. Старые аналоговые решения были дороги и громоздки. Они требовали большого количества дорогостоящего оборудования, квалифицированных специалистов и...
Узнать историю своих предков по фамилии
История собственной семьи вызывает интерес каждого человека. Слушая семейные легенды, люди нередко увлекаются судьбой своих предков, составляют генеалогическое дерево, стараясь...
Узнать откуда пришло заказное письмо по номеру
Многим гражданам периодически приходит корреспонденция, сопровождаемая извещениями, в которых содержится скудная информация, не дающая представления об отправителе. В случае невозможности...
Установка и настройка операционной системы windows
Наши услуги УСТАНОВКА ОПЕРАЦИОННЫХ СИСТЕМ Определения: Операционная система (сокращенно ОС) – комплекс взаимосвязанных программ, предназначенных для управления ресурсами компьютера и...
Adblock detector