Угловое ускорение диска формула

Угловое ускорение диска формула

Рассмотрим твердое тело, которое враща­ется вокруг неподвижной оси. Тогда от­дельные точки этого тела будут описывать окружности разных радиусов, центры ко­торых лежат на оси вращения. Пусть не­которая точка движется по окружности радиуса R (рис.6). Ее положение через промежуток времени t зададим углом . Элементарные (бесконечно малые) углы поворота рассматривают как векторы. Мо­дуль вектора d равен углу поворота, а его направление совпадает с направле­нием поступательного движения острия винта, головка которого вращается в на­правлении движения точки по окружности, т. е. подчиняется правилу правого, винта (рис.6). Векторы, направления которых связываются с направлением вращения, называются псевдовекторами или акси­альными векторами. Эти векторы не имеют определенных точек приложения: они мо­гут откладываться из любой точки оси вращения.

Угловой скоростью называется вектор­ная величина, равная первой производной угла поворота тела по времени:

Вектор «в направлен вдоль оси вращения по правилу правого винта, т. е. так же, как и вектор d (рис. 7). Размерность угловой скорости dim=T -1 , a . ее единица — радиан в секунду (рад/с).

Линейная скорость точки (см. рис. 6)

В векторном виде формулу для линейной скорости можно написать как вектор­ное произведение:

При этом модуль векторного произведе­ния, по определению, равен

, а направление совпадает с направлением поступательного движения правого винта при его вращении от  к R.

Если =const, то вращение равномер­ное и его можно характеризовать перио­дом вращения Т — временем, за которое точка совершает один полный оборот, т. е. поворачивается на угол 2. Так как промежутку времени t=T соответствует =2, то = 2/Т, откуда

Число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени называет­ся частотой вращения:

Угловым ускорением называется век­торная величина, равная первой производ­ной угловой скорости по времени:

При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой ско­рости. При ускоренном движении вектор

 сонаправлен вектору  (рис.8), при замедленном.— противонаправлен ему (рис. 9).

Тангенциальная составляющая ускорения

Нормальная составляющая ускорения

Таким образом, связь между линейны­ми (длина пути s, пройденного точкой по дуге окружности радиуса R, линейная ско­рость v, тангенциальное ускорение а, нор­мальное ускорение аn) и угловыми величи­нами (угол поворота , угловая скорость (о, угловое ускорение ) выражается сле­дующими формулами:

В случае равнопеременного движения точки по окружности (=const)

где  — начальная угловая скорость.

Читайте также:  Формула объема тела вращения вокруг оси

• Что называется материальной точкой? Почему в механике вводят такую модель?

• Что такое система отсчета?

• Что такое вектор перемещения? Всегда ли модуль вектора перемещения равен отрезку пути,

• Какое движение называется поступательным? вращательным?

• Дать определения векторов средней скорости и среднего ускорения, мгновенной скорости

и мгновенного ускорения. Каковы их направления?

• Что характеризует тангенциальная составляющая ускорения? нормальная составляющая

ускорения? Каковы их модули?

• Возможны ли движения, при которых отсутствует нормальное ускорение? тангенциальное

ускорение? Приведите примеры.

• Что называется угловой скоростью? угловым ускорением? Как определяются их направления?

• Какова связь между линейными и угловыми величинами?

1.1. Зависимость пройденного телом пути от времени задается уравнением s = Att 2 +Dt 3 (С = 0,1 м/с 2 , D = 0,03 м/с 3 ). Определить: 1) через какое время после начала движения ускорение а тела будет равно 2 м/с 2 ; 2) среднее ускорение тела за этот промежуток времени. [ 1) 10 с; 2) 1,1 м/с 2 ]

1.2. Пренебрегая сопротивлением воздуха, определить угол, под которым тело брошено к гори­зонту, если максимальная высота подъема тела равна 1/4 дальности его полета. [45°]

1.3. Колесо радиуса R = 0,1 м вращается так, что зависимость угловой скорости от времени задается уравнением  = 2At+5Вt 4 (A=2 рад/с 2 и B=1 рад/с 5 ). Определить полное ускорение точек обода колеса через t=1 с после начала вращения и число оборотов, сделан­ных колесом за это время. [а = 8,5 м/с 2 ; N = 0,48]

1.4. Нормальное ускорение точки, движущейся по окружности радиуса r=4 м, задается уравнением аn+-Bt+Ct 2 (A=1 м/с 2 , В=6 м/с 3 , С=3 м/с 4 ). Определить: 1) тангенциальное ускорение точки; 2) путь, пройденный точкой за время t1=5 с после начала движения; 3) полное ускорение для момента времени t2=1 с. [ 1) 6 м/с 2 ; 2) 85 м; 3) 6,32 м/с 2 ]

1.5. Частота вращения колеса при равнозамедленном движении за t=1 мин уменьшилась от 300 до 180 мин -1 . Определить: 1) угловое ускорение колеса; 2) число полных оборотов, сделанных колесом за это время. [1) 0,21 рад/с 2 ; 2) 360]

1.6. Диск радиусом R=10 см вращается вокруг неподвижной оси так, что зависимость угла поворота радиуса диска от времени задается уравнением =A+Bt+Ct 2 +Dt 3 (B = l рад/с, С=1 рад/с 2 , D=l рад/с 3 ). Определить для точек на ободе колеса к концу второй секунды после начала движения: 1) тангенциальное ускорение а; 2) нормальное ускорение аn; 3) полное ускорение а. [ 1) 0,14 м/с 2 ; 2) 28,9 м/с 2 ; 3) 28,9 м/с 2 ]

Читайте также:  Страница проверки плагина криптопро

Поворот тела на некоторый угол можно задать в виде отрезка, длина которого равна j, а направление совпадает с осью, вокруг которой производится поворот. Направление поворота и изображающего его отрезка связано правилом правого винта.

При вращательном движении твердого тела каждая точка движется по окружности, центр которой лежит на общей оси вращения (рис. 7). При этом радиус-вектор R, направленный от оси вращения к точке, поворачивается за время Dt на некоторый угол Dj. Для характеристики вращательного движения вводится угловая скорость и угловое ускорение.

Угловой скоростью называется векторная величина, равная первой производной угла поворота тела по времени:

Угол в 1 радиан – это центральный угол, длина дуги которого равна радиусу окружности; 360 о = 2p рад.

Направление угловой скорости задается правилом правого винта: вектор угловой скорости сонаправлен с , то есть с поступательным движением винта, головка которого вращается в направлении движения точки по окружности.

Линейная скорость точки связана с угловой скоростью:

.

В векторной форме .

Если в процессе вращения угловая скорость изменяется, то возникает угловое ускорение.

Угловое ускорение – векторная величина, равная первой производной угловой скорости по времени:

Вектор угловой скорости сонаправлен с вектором элементарного изменения угловой скорости , происшедшего за время dt.

При ускоренном движении вектор сонаправлен (рис. 8), при замедленном – противонаправлен (рис. 9).

Найдем связь между угловым и тангенциальным ускорениями:

.

Изменение направления скорости при криволинейном движении характеризуется нормальным ускорением :

.

Таким образом, связь между линейными и угловыми величинами выражается следующими формулами:

.

Типы вращательного движения

а) переменное – вращательное движение, при котором изменяются и :

б) равнопеременное – вращательное движение с постоянным угловым ускорением:

.

в) равномерное – вращательное движение с постоянной угловой скоростью:

.

Равномерное вращательное движение можно характеризовать периодом и частотой вращения .

Период – это время, за которое тело совершает один полный оборот.

, [T] = c.

Частота вращения – это число оборотов совершаемых за единицу времени.

, [n] = c -1 .

За один оборот: ,

, .

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8855 — | 7663 — или читать все.

Угловое ускорение – это псевдовекторная физическая величина, которая равна первой производной от псевдовектора угловой скорости по времени:

.

Угловое ускорение характеризует силу изменения модуля и направления угловой скорости при движении твердого тела.

Читайте также:  Какие есть роботы в мире

Ускорение точки твердого тела при свободном движении.

К понятию углового ускорения можно прийти, изучая определение ускорения точки твердого тела, находящегося в свободном движении. Определение скорости точки тела В (по формуле Эйлера) в свободном движении:

.

где — скорость точки тела А, которая была принята как полюс; — псевдовектор угловой скорости тела; — вектор, который был выпущен из полюса в точку – его скорость определяем. Продифференцировав это выражение по времени данное выражение, получаем:

.

где — является ускорением полюса А; — псевдовектором углового ускорения.

Составляющая ускорения точки В, которая определяется через угловое ускорение называется вращательным ускорением точки В около полюса А.

.

Последнее слагаемое в полученной формуле, которое зависит от угловой скорости, называется осестремительным ускорением точки В вокруг полюса А.

.

Угловое ускорение при вращении тела вокруг неподвижной оси.

Когда происходит вращение тела около неподвижной оси, которая проходит через недвижимые точки тела О1 и О2, производные орта оси вращения = 0:

.

Отсюда вектор углового ускорения вычисляется тривиально через вторую производную угла поворота

или .

где — это алгебраическая величина углового ускорения.

Здесь псевдовектор углового ускорения (и угловая скорость) идет по оси вращения тела. В случае наличия одинакового знака у первой и второй производной угла поворота:

,

значит, вектор углового ускорения и вектор угловой скорости имеют одинаковое направление и тело имеет ускоренное вращение. Иначе, при , векторы угловой скорости и углового ускорения имеют противоположные направления, а, значит, тело вращается замедленно.

В теормехе обычно вводится понятие угловой скорости и углового ускорения, когда рассматривается вращение тела вокруг не двигающейся оси. При чем, для решения задачи используют зависимость от времени угла поворота тела

Отсюда закон движения точки тела можно выразить натурально, как длина дуги окружности, которую прошла точка, совершая поворот тела от определенного исходного положения φ = φ (t)

где R является расстоянием от точки до оси вращения.

Продифференцировав вышеуказанное выражение по времени, найдем алгебраическую скорость точки:

.

где является алгебраической величиной скорости угловой.

Через геометрическую сумму тангенциального и нормального ускорения можно выразить ускорение точки тела при вращении:

.

При этом тангенциальное ускорение выходит в виде производной от алгебраической скорости точки:

.

где является алгебраической величиной углового ускорения. А при помощи ниже приведенной формулы определим нормальное ускорение точки тела:

.

Ссылка на основную публикацию
Топ лучших видеокарт для игр
Видеокарты крайне быстро улучшаются, практически каждые полгода выходит видеоадаптер, значительно превосходящий предшественника. Активный прогресс обусловлен быстрым увеличением системных требований компьютерных...
Телефон леново включается но не запускается
Бывает, что пользователь включает свой смартфон, процесс доходит до заставки (логотипа) и дальше не грузится. Сразу начинается паника, ведь телефон...
Телефон леново инструкция для чайников
Большинство из нас чувствует себя неуверенно, когда приходится знакомиться с новой операционной системой. И несмотря на то, что Андроид сегодня...
Топ приложений для запоминания слов
Топ-8 приложений, где запоминать английские слова Приложения для изучения английских слов помогают быстро и эффективно пополнять словарный запас. Без работы...
Adblock detector