Убедиться что на векторах можно построить параллелепипед

Убедиться что на векторах можно построить параллелепипед

вариантов текущего контроля

1. Домашнее задание №1. «Векторная алгебра и аналитическая геометрия»

Дано: точки , , , ; числа , ; угол .

1. Найти длину вектора , если , и , — единичные векторы, угол между которыми равен .

2. Найти координаты точки М, делящей вектор в отношении .

3. Проверить, можно ли на векторах и построить параллелограмм. Если да, то найти длины сторон параллелограмма.

4. Найти углы между диагоналями параллелограмма ABCD.

5. Найти площадь параллелограмма ABCD.

6. Убедиться, что на векторах , , можно построить параллелепипед. Найти объем этого параллелепипеда и длину его высоты.

7. Найти координаты вектора , направленного по высоте параллелепипеда , проведенной из точки A к плоскости основания , координаты точки H и координаты единичного вектора, совпадающего по направлению с вектором .

8. Найти разложение вектора по векторам , , .

9. Найти проекцию вектора на вектор .

10. Написать уравнения плоскостей:

а) P, проходящей через точки A, B, D;

б) P1, проходящей через точку A и прямую A1B1;

в) P2, проходящей через точку A1 параллельно плоскости P;

г) P3 , содержащей прямые AD и AA1;

д) P4 , проходящей через точки A и C1 , перпендикулярно плоскости P.

11. Найти расстояние между прямыми, на которых лежат ребра AB и CC1; написать канонические и параметрические уравнения общего к ним перпендикуляра.

12. Найти точку A2 , симметричную точке A1 относительно плоскости основания ABCD.

13. Найти угол между прямой, на которой лежит диагональ A1C, и плоскостью основания ABCD.

14. Найти острый угол между плоскостями ABC1D (плоскость P) и ABB1A1 (плоскость P1).

2. Домашнее задание №2. «Кривые и поверхности второго порядка»

В задачах 1–2 заданное уравнение линии второго порядка привести к каноническому виду и построить кривую в системе координат OXY.

В задаче 3 по приведенным данным найти уравнение кривой в системе координат OXY.

Читайте также:  Как проверить видеокамеру на работоспособность

Для задач 1–3 указать:

1) канонический вид уравнения линии;

2) преобразование параллельного переноса, приводящее к каноническому виду;

3) в случае эллипса: полуоси, эксцентриситет, центр, вершины, фокусы, расстояния от точки C до фокусов; в случае гиперболы: полуоси, эксцентриситет, центр, вершины, фокусы, расстояния от точки C до фокусов, уравнения асимптот; в случае параболы: параметр, вершину, фокус, уравнение директрисы, расстояния от точки C до фокуса и директрисы;

4) для точки C проверить свойство, характеризующее данный тип кривых как геометрическое место точек.

В задаче 4 указать преобразование параллельного переноса, приводящее данное уравнение поверхности к каноническому виду, канонический вид уравнения поверхности и тип поверхности. Построить поверхность в канонической системе координат OXYZ.

1) , ; 2) , .

3) Парабола симметрична относительно прямой , имеет фокус , пересекает ось OX в точке , а ее ветви лежат в полуплоскости .

4) .

Контроль по модулю №1 “Векторная алгебра. Аналитическая геометрия”

1. Правые и левые тройки векторов. Определение векторного произведения векторов. Сформулировать свойства векторного произведения векторов. Вывести формулу вычисления векторного произведения двух векторов, заданных своими координатами в ортонормированном базисе.

2. Найти угол между векторами если

3. Найти, если это возможно, разложение вектора по векторам и

4. Составить уравнение плоскости, проходящей через точки , и перпендикулярной плоскости Составить канонические уравнения прямой, проходящей через точку и ортогональной к найденной плоскости.

Последнее изменение этой страницы: 2016-12-09; Нарушение авторского права страницы

Версия системы:
7.83 (12.03.2020)
JS-v.1.35 | CSS-v.3.37

Общие новости:
06.01.2020, 22:45

Последний вопрос:
22.03.2020, 18:47
Всего: 151816

Последний ответ:
22.03.2020, 21:51
Всего: 259878

Последняя рассылка:
22.03.2020, 23:45

РАЗДЕЛ • Математика

Консультации и решение задач по алгебре, геометрии, анализу, дискретной математике.

[администратор рассылки: Коцюрбенко Алексей Владимирович (Старший модератор)]

Читайте также:  Смарт часы сяоми ми банд 3

Лучшие эксперты в этом разделе

Михаил Александров
Статус: Академик
Рейтинг: 1076
Коцюрбенко Алексей Владимирович
Статус: Старший модератор
Рейтинг: 894
CradleA
Статус: Профессор
Рейтинг: 372
Перейти к консультации №:

Добрый вечер уважаемые эксперты , помогите пожалуйста с решением задачи :
A(1,2,3) B(0,3,2) D(1,0,1) А1(1,2,4) можно ли построить на векторах AB и AD и АА1 параллелепипед и если да то найти его объём.

Состояние: Консультация закрыта

Находим координаты векторов:
AB = (0 – 1; 3 – 2; 2 – 3) = (-1; 1; -1),
AD = (1 – 1; 0 – 2; 1 – 3) = (0; -2; -2),
AA1 = (1 – 1; 2 – 2; 4 – 3) = (0; 0; 1).

Находим смешанное произведение векторов: <AB, AD, AA1> =
|-1 1 -1|
|0 -2 -2| = (-1) ∙ (-2) ∙ 1 = 2 ≠ 0,
|0 0 1|
следовательно, параллелепипед построить можно, и его объем равен 2.

0

Отправлять сообщения
модераторам могут
только участники портала.
ВОЙТИ НА ПОРТАЛ »
регистрация »

Возможность оставлять сообщения в мини-форумах консультаций доступна только после входа в систему.
Воспользуйтесь кнопкой входа вверху страницы, если Вы зарегистрированы или пройдите простую процедуру регистрации на Портале.

По координатам точек считаешь векторы.

Вектор от точки C (x1,y1,z1) до точки D (x2,y2,z2) имеет вид: || x2-x1 y2-y1 z2-z1 ||
Примени это к заданым точкам — получишь векторы.

Построить параллелепипед ( с ненулевым объёмом, надо полагать) можно, если они не лежат в одной плоскости. Иначе — образуют базис в 3D пространстве.

Убедиться можно либо доказав их линейную независимость, либо посчитав смешанное произведение. Формулы в учебнике и в инете есть. Координаты есть из предыдущего шага.

Собственно, для вычисления объёма нужно то же векторное произведение.

Ссылка на основную публикацию
Топ лучших видеокарт для игр
Видеокарты крайне быстро улучшаются, практически каждые полгода выходит видеоадаптер, значительно превосходящий предшественника. Активный прогресс обусловлен быстрым увеличением системных требований компьютерных...
Телефон леново включается но не запускается
Бывает, что пользователь включает свой смартфон, процесс доходит до заставки (логотипа) и дальше не грузится. Сразу начинается паника, ведь телефон...
Телефон леново инструкция для чайников
Большинство из нас чувствует себя неуверенно, когда приходится знакомиться с новой операционной системой. И несмотря на то, что Андроид сегодня...
Топ приложений для запоминания слов
Топ-8 приложений, где запоминать английские слова Приложения для изучения английских слов помогают быстро и эффективно пополнять словарный запас. Без работы...
Adblock detector