Треугольник вписанный в параболу

Треугольник вписанный в параболу

Научно-практическая конференция учащихся и педагогов

«Первые шаги в науку»

Изучение свойств треугольников, вписанных в параболу

Выполнил:

ученик 11 класса

ГУО«Речицкий районный лицей»

ГУО«Речицкий районный лицей»

2. Парабола и аналитическая геометрия……………………………………. 6

3. Парабола и треугольник……………………………………………………. 8

4. Об одном свойстве параболы………………………………………………..11

В школьной программе заметное место уделяется построению графиков функций. Моя работа посвящена изучению параболы. Я думаю, она будет интересна и поучительна всем тем, кто увлечен таким предметом, как математика. Линию такую как парабола, мы изучали в 8 классе. В курсе аналитической геометрии, она имеет другую формулу и график. Свойства, которые я буду исследовать, найдут применение в различных предметах. Исследование начинается с элементарных фактов и заканчивается весьма удивительными вещами. В своей работе я буду наблюдать за параболой, около которой будет описан или в которую вписан треугольник. А также рассмотрю интересные задачи олимпиадного уровня. В основном упор будет делаться на задачи с треугольниками, так как там можно увидеть интересные вещи, которые могут быть исследованы в других работах. Тема моей исследовательской работы актуальна и может быть полезна школьникам старших классов, учителям, а также учащимся физико-математического направления, и просто тем, кто увлечен математикой.

1. Парабола в алгебре

Парабола – это график квадратичной функции вида y=ax2+bx+c. Ее также можно представить видом . Координаты вершины

(m, n) ее можно определить:, . Направление ветвей на графике зависит от коэффициента а, если a>0, то ветви направлены вверх, а если a

Пример . Как расположены на плоскости точки, координаты которых удовлетворяют условиям (x-3) 2 + (y-3) 2 y?

Решение. Первое неравенство системы определяет внутренность круга, не включая границу, т.е. окружность с центром в точке (3,3) и радиуса . Второе неравенство задает полуплоскость, определяемую прямой, уравнение которой x = y, причем, так как неравенство строгое, точки самой прямой не принадлежат полуплоскости, а все точки ниже этой прямой принадлежат полуплоскости. Поскольку мы ищем точки, удовлетворяющие обоим неравенствам, то искомая область — внутренность полукруга.

Читайте также:  Подставка под ноутбук в кровать своими руками

Пример. Вычислить длину стороны квадрата, вписанного в эллипс, уравнение которого x 2 /a 2 + y 2 /b 2 = 1.

Решение. Пусть М(с, с) — вершина квадрата, лежащая в первой четверти. Тогда сторона квадрата будет равна 2 с . Т.к. точка М принадлежит эллипсу, ее координаты удовлетворяют уравнению эллипса c 2 /a 2 + c 2 /b 2 = 1, откуда
c = ab/ ; значит, сторона квадрата — 2ab/ .

Пример. Зная уравнение асимптот гиперболы y = ± 0,5 x и одну из ее точек М(12, 3 ), составить уравнение гиперболы. Свойства степенных рядов. Ряды Тейлора и Маклорена

Решение. Запишем каноническое уравнение гиперболы: x 2 /a 2 — y 2 /b 2 = 1. Асимптоты гиперболы задаются уравнениями y = ± 0,5 x, значит, b/a = 1/2, откуда a=2b. Поскольку М — точка гиперболы, то ее координаты удовлетворяют уравнению гиперболы, т.е. 144/a 2 — 27/b 2 = 1. Учитывая, что a = 2b, найдем b: b 2 =9 Þ b=3 и a=6. Тогда уравнение гиперболы — x 2 /36 — y 2 /9 = 1.

Пример. Вычислить длину стороны правильного треугольника ABC, вписанного в параболу с параметром р , предполагая, что точка А совпадает с вершиной параболы. Определённый интеграл

Решение. Каноническое уравнение параболы с параметром р имеет вид y 2 = 2рx, вершина ее совпадает с началом координат, и парабола симметрична относительно оси абсцисс. Так как прямая AB образует с осью Ox угол в 30 o , то уравнение прямой имеет вид: y = x. большим количеством графиков

Следовательно, мы можем найти координаты точки B, решая систему уравнений y 2 =2рx, y = x, откуда x = 6р, y = 2 р. Значит, расстояние между точками A(0,0) и B(6р,2 р) равно 4 р.

По-видимому, речь идет о канонической форме уравнения параболы

Пусть координата одной из вершин (x, y), тогда сторона треугольника равна 2*х, и из теоремы Пифагора

Ссылка на основную публикацию
Топ лучших видеокарт для игр
Видеокарты крайне быстро улучшаются, практически каждые полгода выходит видеоадаптер, значительно превосходящий предшественника. Активный прогресс обусловлен быстрым увеличением системных требований компьютерных...
Телефон леново включается но не запускается
Бывает, что пользователь включает свой смартфон, процесс доходит до заставки (логотипа) и дальше не грузится. Сразу начинается паника, ведь телефон...
Телефон леново инструкция для чайников
Большинство из нас чувствует себя неуверенно, когда приходится знакомиться с новой операционной системой. И несмотря на то, что Андроид сегодня...
Топ приложений для запоминания слов
Топ-8 приложений, где запоминать английские слова Приложения для изучения английских слов помогают быстро и эффективно пополнять словарный запас. Без работы...
Adblock detector