Транзисторы для импульсных блоков питания справочник

Транзисторы для импульсных блоков питания справочник

Высокочастотный преобразователь (инвертор)

В первой части нашего рассказа о схемотехнике блоков питания персональных компьютеров мы познакомились со схемой входного сетевого выпрямителя и фильтра. Давайте продолжим изучение компьютерного блока питания. Здесь мы разберёмся в том, как работает высокочастотный преобразователь – инвертор.

Постоянное напряжение 310 вольт, снимаемое с сетевого выпрямителя, подаётся на высокочастотный преобразователь. Высокочастотный преобразователь — это двухтактный инвертор, выполненный по схеме полумоста. Преобразователь работает на частоте в десятки килогерц и нагружен на высокочастотный силовой трансформатор.

Частота преобразования выбирается порядка 18 – 50 КГц, что подразумевает маленькие размеры силового трансформатора и небольшие величины ёмкостей конденсаторов фильтров. Один из плюсов импульсного блока питания является высокий КПД, достигающий 80% и экономичность, поскольку блок потребляет энергию только в то время, когда один из транзисторов преобразователя открыт. Когда он закрыт, энергию на нагрузку отдаёт конденсатор фильтра вторичной цепи.

Управление полумостовым инвертором осуществляется ШИМ-контроллером (Узел управления). Об узле управления блоком питания будет рассказано в следующей части.

Итак, высокочастотный преобразователь работает следующим образом: на него приходит постоянное напряжение 310 вольт с сетевого выпрямителя и конденсаторов фильтра. Одновременно в базовые цепи мощных транзисторов подаются прямоугольные импульсы положительной полярности и с частотой следования допустим 20 кГц. С этой частотой транзисторы как ключевые элементы открываются и закрываются.

На первичной обмотке трансформатора Т2 присутствует импульсное высокое напряжение с той же частотой 20 кГц. Трансформатор, естественно, понижающий и на его вторичных обмотках, которых несколько, формируются все необходимые для работы компьютера питающие напряжения, после этого все напряжения выпрямляются, фильтруются и подаются на системную плату.

Мощные ключевые транзисторы инвертора являются своеобразными "мускулами" блока питания. Именно через ключевые транзисторы инвертора "прокачивается" вся мощность, которая потребляется компьютером. Ключевые транзисторы устанавливаются на радиатор для принудительного охлаждения во время работы, а сам радиатор обдувается вентилятором.

В качестве ключевых транзисторов инвертора могут применяться как биполярные, так и полевые MOSFET транзисторы. Обычно же используются биполярные транзисторы.

Взглянем на схему. На ней изображена часть схемы ИБП марки GT-150W.

Биполярные транзисторы VT1 и VT2 поочерёдно открываются с частотой в десятки килогерц. Трансформатор T2 — импульсный силовой трансформатор. Он же обеспечивает гальваническую развязку от электросети. Импульсный силовой трансформатор заметно выделяется на фоне других трансформаторов, установленных на печатной плате. Найти его не сложно.

Со вторичных обмоток трансформатора T2 снимается пониженное переменное напряжение. На схеме показаны элементы одного из выходных выпрямителей +12 вольт (VD6, VD7, L1, C5). Электролитические конденсаторы C6, C7 — это конденсаторы сетевого фильтра и выпрямителя, речь о котором шла в первой части.

Трансформатор T1 — согласующий. Он является промежуточным звеном между микросхемой ШИМ-контроллера и мощными ключевыми транзисторами VT1, VT2. Габариты его заметно меньше, чем у трансформатора T2. Диоды VD4 и VD5 предохраняют мощные транзисторы от напряжения обратной полярности. У мощных полевых транзисторов эти диоды, как правило, уже встроены, поэтому на печатной плате диоды VD4, VD5 можно и не обнаружить. Так же защитные диоды встраивают в некоторые мощные биполярные транзисторы. Всё зависит от марки транзистора.

Читайте также:  Как удалить диск recovery

Схема запуска.

Узел управления инвертора питается выходным напряжением блока, но в момент включения все напряжения отсутствуют. Начальный запуск может осуществляться разными способами. Рассмотрим более подробно схему запуска инвертора, которая "заводит" мощный каскад инвертора.

После включения блока питания на базы транзисторов VT1, VT2 подаётся напряжение через делитель, выполненный на резисторах R3 — R6. При этом транзисторы "приоткрываются". При этом ещё начинается заряд конденсатора C4. Ток заряда конденсатора C4 проходя через часть вторичной обмотки (II) трансформатора T1 наводит в ней (обмотке II) и обмотке III напряжение. Это напряжение открывает один из транзисторов (VT1 или VT2). Какой именно из транзисторов откроется зависит от характеристик элементов каскада.

В результате открытия одного из ключевых транзисторов во вторичной обмотке трансформатора T2 появляется импульс тока, который проходит через один из диодов (VD6 или VD7) и заряжает конденсатор C3. Напряжения на C3 достаточно для питания узла управления в момент пуска инвертора. Далее в работу включается узел управления, который и начинает управлять транзисторами VT1 и VT2 в штатном режиме.

Вот так хитроумно реализована схема запуска инвертора.

В мощном каскаде наиболее частой неисправностью является выход из строя транзисторов, поскольку они работают в достаточно тяжёлом тепловом режиме. Ну, и, конечно, слабое звено это электролитические конденсаторы, которые со временем "высыхают" и теряют ёмкость. Также элктролиты выходят из строя из-за превышения рабочего напряжения.

Высокочастотный преобразователь (инвертор)

В первой части нашего рассказа о схемотехнике блоков питания персональных компьютеров мы познакомились со схемой входного сетевого выпрямителя и фильтра. Давайте продолжим изучение компьютерного блока питания. Здесь мы разберёмся в том, как работает высокочастотный преобразователь – инвертор.

Постоянное напряжение 310 вольт, снимаемое с сетевого выпрямителя, подаётся на высокочастотный преобразователь. Высокочастотный преобразователь — это двухтактный инвертор, выполненный по схеме полумоста. Преобразователь работает на частоте в десятки килогерц и нагружен на высокочастотный силовой трансформатор.

Частота преобразования выбирается порядка 18 – 50 КГц, что подразумевает маленькие размеры силового трансформатора и небольшие величины ёмкостей конденсаторов фильтров. Один из плюсов импульсного блока питания является высокий КПД, достигающий 80% и экономичность, поскольку блок потребляет энергию только в то время, когда один из транзисторов преобразователя открыт. Когда он закрыт, энергию на нагрузку отдаёт конденсатор фильтра вторичной цепи.

Управление полумостовым инвертором осуществляется ШИМ-контроллером (Узел управления). Об узле управления блоком питания будет рассказано в следующей части.

Итак, высокочастотный преобразователь работает следующим образом: на него приходит постоянное напряжение 310 вольт с сетевого выпрямителя и конденсаторов фильтра. Одновременно в базовые цепи мощных транзисторов подаются прямоугольные импульсы положительной полярности и с частотой следования допустим 20 кГц. С этой частотой транзисторы как ключевые элементы открываются и закрываются.

На первичной обмотке трансформатора Т2 присутствует импульсное высокое напряжение с той же частотой 20 кГц. Трансформатор, естественно, понижающий и на его вторичных обмотках, которых несколько, формируются все необходимые для работы компьютера питающие напряжения, после этого все напряжения выпрямляются, фильтруются и подаются на системную плату.

Читайте также:  Как увеличить расстояние между буквами css

Мощные ключевые транзисторы инвертора являются своеобразными "мускулами" блока питания. Именно через ключевые транзисторы инвертора "прокачивается" вся мощность, которая потребляется компьютером. Ключевые транзисторы устанавливаются на радиатор для принудительного охлаждения во время работы, а сам радиатор обдувается вентилятором.

В качестве ключевых транзисторов инвертора могут применяться как биполярные, так и полевые MOSFET транзисторы. Обычно же используются биполярные транзисторы.

Взглянем на схему. На ней изображена часть схемы ИБП марки GT-150W.

Биполярные транзисторы VT1 и VT2 поочерёдно открываются с частотой в десятки килогерц. Трансформатор T2 — импульсный силовой трансформатор. Он же обеспечивает гальваническую развязку от электросети. Импульсный силовой трансформатор заметно выделяется на фоне других трансформаторов, установленных на печатной плате. Найти его не сложно.

Со вторичных обмоток трансформатора T2 снимается пониженное переменное напряжение. На схеме показаны элементы одного из выходных выпрямителей +12 вольт (VD6, VD7, L1, C5). Электролитические конденсаторы C6, C7 — это конденсаторы сетевого фильтра и выпрямителя, речь о котором шла в первой части.

Трансформатор T1 — согласующий. Он является промежуточным звеном между микросхемой ШИМ-контроллера и мощными ключевыми транзисторами VT1, VT2. Габариты его заметно меньше, чем у трансформатора T2. Диоды VD4 и VD5 предохраняют мощные транзисторы от напряжения обратной полярности. У мощных полевых транзисторов эти диоды, как правило, уже встроены, поэтому на печатной плате диоды VD4, VD5 можно и не обнаружить. Так же защитные диоды встраивают в некоторые мощные биполярные транзисторы. Всё зависит от марки транзистора.

Схема запуска.

Узел управления инвертора питается выходным напряжением блока, но в момент включения все напряжения отсутствуют. Начальный запуск может осуществляться разными способами. Рассмотрим более подробно схему запуска инвертора, которая "заводит" мощный каскад инвертора.

После включения блока питания на базы транзисторов VT1, VT2 подаётся напряжение через делитель, выполненный на резисторах R3 — R6. При этом транзисторы "приоткрываются". При этом ещё начинается заряд конденсатора C4. Ток заряда конденсатора C4 проходя через часть вторичной обмотки (II) трансформатора T1 наводит в ней (обмотке II) и обмотке III напряжение. Это напряжение открывает один из транзисторов (VT1 или VT2). Какой именно из транзисторов откроется зависит от характеристик элементов каскада.

В результате открытия одного из ключевых транзисторов во вторичной обмотке трансформатора T2 появляется импульс тока, который проходит через один из диодов (VD6 или VD7) и заряжает конденсатор C3. Напряжения на C3 достаточно для питания узла управления в момент пуска инвертора. Далее в работу включается узел управления, который и начинает управлять транзисторами VT1 и VT2 в штатном режиме.

Вот так хитроумно реализована схема запуска инвертора.

В мощном каскаде наиболее частой неисправностью является выход из строя транзисторов, поскольку они работают в достаточно тяжёлом тепловом режиме. Ну, и, конечно, слабое звено это электролитические конденсаторы, которые со временем "высыхают" и теряют ёмкость. Также элктролиты выходят из строя из-за превышения рабочего напряжения.

Транзисторы для импульсных блоков питания

У начинающих радио мастеров иногда возникают трудности с заменой мощных транзисторов для импульсных блоков питания телевизоров при ремонте, ввиду отсутствия аналогичных, если это так, то эта статья для вас.

Читайте также:  Кто поет и название песни

Раньше довольно часто сталкивался с такой ситуацией, так как на рынках и в магазинах, транзисторы для импульсных блоков питания и строчной развертки были довольно редки, да еще и не те которые нужно. Интернет отсутствовал, а выручала литература.

Практика замены транзисторов в блоках питания показывает, что данная методика работает, по крайней мере, возвратов нет.

Импульсные блоки питания телевизоров в большинстве своем построены с использованием в качестве силового ключа, мощные биполярные или полевые транзисторы.

Биполярные транзисторы

В качестве силовых транзисторов в блоках питания используются в основном транзисторы без дополнительного диода и резистора (смотрите рисунок). Диод в транзисторе выполняет роль демпфера (в строчной развертке блокирует вертикальные полосы), установка такого транзистора особого вреда не нанесет, но может обернуться потерей стабилизации. Здесь как говориться, «если нельзя, но очень хочется, то можно»

Это транзисторы типа BU208 (используются в старых телевизорах, но запросто можно использовать установив на отдельный радиатор и подпаяв проводами), BU508, 2SD1497, КТ872А, КТ8107А. Эти транзисторы не полные аналоги друг друга, но вполне взаимозаменяемы. Единственное что необходимо сделать, это проверить температурный режим после включения, при этом помните КТ872А, КТ8107А имеют неизолированный корпус и их устанавливать нужно с использованием диэлектрической пластины (например слюды). Проверять их нагрев необходимо после выключения телевизора.

Полный аналог подразумевает совпадение всех характеристик транзисторов, что не вполне необходимо. Посмотрите таблицы:

В таблицах обращаем внимание на особо важные параметры транзисторов это: напряжение коллектор-эмиттер (к примеру импульсный 1500 В, постоянный – 600 В для BU 508 и 700 В для КТ8107), ток коллектора импульсный — 15 А, постоянный 8 ампер.

Полевые транзисторы

С подбором полевых транзисторов для импульсных блоков питания несколько сложнее. Здесь помимо основных параметров: максимальное постоянное и импульсное напряжение, ток – постоянный и переменный, надо обращать внимание есть ли дополнительный диод между стоком – истоком D-S,

а также какой структуры транзистор с N – каналом или P – каналом (смотрите рисунки).

Это важно от того, что каким напряжением будет открываться транзистор положительным или отрицательным.

Также необходимо обращать внимание на тип затвора транзистора: изолированный он (не путать с изолированным корпусом) или управляющий (смотрите фото). На рисунках вверху полевые транзисторы с изолированным затвором.

Полевой транзистор с управляющим затвором.

Встретить такие транзисторы в импульсных блоках питания телевизоров, это большая редкость.

В основном в блоках питания современных телевизоров устанавливаются полевые транзисторы с изолированным затвором N – типа. Вот основные из них MNP6N60E, SSP7N60A, STP4NK60ZFP (P4NK60ZFP, 6N60E — первые две буквы не всегда указываются), BUZ90 (слабоват), BUZ91 и т. д. И не забываем проверять при установке температурный режим.

Неправильная замена транзистора в импульсном блоке питания телевизора может обернуться потерей стабилизации, но еще раз повторюсь, такого не случалось.

Купить сейчас транзисторы для блока питания не проблема BU508, 6N60E весьма распространены, для тех у кого нет рядом таких магазинов можно воспользоваться интернет — магазином, например «Гуливер».

Ссылка на основную публикацию
Топ лучших видеокарт для игр
Видеокарты крайне быстро улучшаются, практически каждые полгода выходит видеоадаптер, значительно превосходящий предшественника. Активный прогресс обусловлен быстрым увеличением системных требований компьютерных...
Телефон леново включается но не запускается
Бывает, что пользователь включает свой смартфон, процесс доходит до заставки (логотипа) и дальше не грузится. Сразу начинается паника, ведь телефон...
Телефон леново инструкция для чайников
Большинство из нас чувствует себя неуверенно, когда приходится знакомиться с новой операционной системой. И несмотря на то, что Андроид сегодня...
Топ приложений для запоминания слов
Топ-8 приложений, где запоминать английские слова Приложения для изучения английских слов помогают быстро и эффективно пополнять словарный запас. Без работы...
Adblock detector