Составить программу для вычисления факториала

Составить программу для вычисления факториала

Факториал — произведение натуральных чисел от единицы до заданного числа. Имеет условное обозначение в виде восклицательного знака. n!=1*2*3*. *n (Например: 3!=1*2*3=6).

В Turbo Pascal факториал находится, как правило, двумя способами: с помощью цикла или с помощью рекурсии.

Вычисление факториала в pascal с помощью цикла

Данный способ нахождения факториала исключительно прост. В цикле от 1 до n умножается число само на себя. При этом необходимо учитывать условие, что 0!=1. Ниже представлена реализация программы с помощью цикла for. Аналогично используются repeat и while.

if (n=0) then writeln(‘0!=1’) else

if x=0 then fact:=1

Факториал числа — Вычисление с помощью цикла (1 способ)

Факториал — Нахождение факториала в паскале с помощью рекурсии (2 способ)

к := 1;
f := 0;
while k f:=f * k;
к:=к + 1

Найдите ошибки. Допишите необходимые операторы и выполните программу на компьютере.
Пример входных данных

Пример входных данных Пример выходных данных
Введите n> 5 5!=120
Введите n> 6 6!=720

Понятие факториала известно всем. Это функция, вычисляющая произведение последовательных натуральных чисел от 1 до N включительно: N! = 1 * 2 * 3 *… * N. Факториал — быстрорастущая функция, уже для небольших значений N значение N! имеет много значащих цифр.

Попробуем реализовать эту функцию на языке программирования. Очевидно, нам понадобиться язык, поддерживающий длинную арифметику. Я воспользуюсь C#, но с таким же успехом можно взять Java или Python.

Итак, простейшая реализация (назовем ее наивной) получается прямо из определения факториала:

На моей машине эта реализация работает примерно 1,6 секунд для N=50 000.

Далее рассмотрим алгоритмы, которые работают намного быстрее наивной реализации.

Алгоритм вычисления деревом

Первый алгоритм основан на том соображении, что длинные числа примерно одинаковой длины умножать эффективнее, чем длинное число умножать на короткое (как в наивной реализации). То есть нам нужно добиться, чтобы при вычислении факториала множители постоянно были примерно одинаковой длины.

Читайте также:  Смартфон с самой мощной батареей 2018

Пусть нам нужно найти произведение последовательных чисел от L до R, обозначим его как P(L, R). Разделим интервал от L до R пополам и посчитаем P(L, R) как P(L, M) * P(M + 1, R), где M находится посередине между L и R, M = (L + R) / 2. Заметим, что множители будут примерно одинаковой длины. Аналогично разобьем P(L, M) и P(M + 1, R). Будем производить эту операцию, пока в каждом интервале останется не более двух множителей. Очевидно, что P(L, R) = L, если L и R равны, и P(L, R) = L * R, если L и R отличаются на единицу. Чтобы найти N! нужно посчитать P(2, N).

Посмотрим, как будет работать наш алгоритм для N=10, найдем P(2, 10):

P(2, 10)
P(2, 6) * P(7, 10)
( P(2, 4) * P(5, 6) ) * ( P(7, 8) * P(9, 10) )
( (P(2, 3) * P(4) ) * P(5, 6) ) * ( P(7, 8) * P(9, 10) )
( ( (2 * 3) * (4) ) * (5 * 6) ) * ( (7 * 8) * (9 * 10) )
( ( 6 * 4 ) * 30 ) * ( 56 * 90 )
( 24 * 30 ) * ( 5 040 )
720 * 5 040
3 628 800

Получается своеобразное дерево, где множители находятся в узлах, а результат получается в корне

Реализуем описанный алгоритм:

Для N=50 000 факториал вычисляется за 0,9 секунд, что почти вдвое быстрее, чем в наивной реализации.

Алгоритм вычисления факторизацией

Второй алгоритм быстрого вычисления использует разложение факториала на простые множители (факторизацию). Очевидно, что в разложении N! участвуют только простые множители от 2 до N. Попробуем посчитать, сколько раз простой множитель K содержится в N!, то есть узнаем степень множителя K в разложении. Каждый K-ый член произведения 1 * 2 * 3 *… * N увеличивает показатель на единицу, то есть показатель степени будет равен N / K. Но каждый K 2 -ый член увеличивает степень еще на единицу, то есть показатель становится N / K + N / K 2 . Аналогично для K 3 , K 4 и так далее. В итоге получим, что показатель степени при простом множителе K будет равен N / K + N / K 2 + N / K 3 + N / K 4 +…

Читайте также:  Майл агент что это такое

Для наглядности посчитаем, сколько раз двойка содержится в 10! Двойку дает каждый второй множитель (2, 4, 6, 8 и 10), всего таких множителей 10 / 2 = 5. Каждый четвертый дает четверку (2 2 ), всего таких множителей 10 / 4 = 2 (4 и 8). Каждый восьмой дает восьмерку (2 3 ), такой множитель всего один 10 / 8 = 1 (8). Шестнадцать (2 4 ) и более уже не дает ни один множитель, значит, подсчет можно завершать. Суммируя, получим, что показатель степени при двойке в разложении 10! на простые множители будет равен 10 / 2 + 10 / 4 + 10 / 8 = 5 + 2 + 1 = 8.

Если действовать таким же образом, можно найти показатели при 3, 5 и 7 в разложении 10!, после чего остается только вычислить значение произведения:

10! = 2 8 * 3 4 * 5 2 * 7 1 = 3 628 800

Осталось найти простые числа от 2 до N, для этого можно использовать решето Эратосфена:

Эта реализация также тратит примерно 0,9 секунд на вычисление 50 000!

Как справедливо отметил pomme скорость вычисления факториала на 98% зависит от скорости умножения. Попробуем протестировать наши алгоритмы, реализовав их на C++ с использованием библиотеки GMP. Результаты тестирования приведены ниже, по ним получается что алгоритм умножения в C# имеет довольно странную асимптотику, поэтому оптимизация дает относительно небольшой выигрыш в C# и огромный в C++ с GMP. Однако этому вопросу вероятно стоит посвятить отдельную статью.

Все алгоритмы тестировались для N равном 1 000, 2 000, 5 000, 10 000, 20 000, 50 000 и 100 000 десятью итерациями. В таблице указано среднее значение времени работы в миллисекундах.

График с линейной шкалой

График с логарифмической шкалой

Идеи и алгоритмы из комментариев

Хабражители предложили немало интересных идей и алгоритмов в ответ на мою статью, здесь я оставлю ссылки на лучшие из них

Читайте также:  Как взломать стр если знаешь логин

Исходные коды реализованных алгоритмов приведены под спойлерами

Ссылка на основную публикацию
Снять пароль с роутера tp link
Домашняя беспроводная сеть Wi-Fi должна быть защищена паролем. Но ведь бывают разные случаи, скажете вы. Например, вы хотите пригласить друзей...
Скопировать контакты с андроид на компьютер
Мы уже рассказывали о том, как скопировать контакты со смартфона на смартфон. Но иногда проще перебросить контактную книгу на компьютер....
Скопировать строку таблицы значений 1с в другую
Не претендуя на полноту описания функций и методов работы с таблицей значений 1с привожу некоторые аспекты, которые в своё время...
Снять пароль с макроса excel
Здравствуйте, друзья! Последние дни бился над такой задачей: Имеется файл .xls, в нем макрос на VBA, защищенный паролем. Файл создается...
Adblock detector