Сложение и вычитание комплексных чисел калькулятор

Сложение и вычитание комплексных чисел калькулятор

Калькулятор отображает комплексное число на комплексной плоскости, отображает число в различных формах, вычисляет модуль, главный аргумент и сопряженное число для заданного комплексного числа.

Начиная с 16 века математики столкнулись с необходимостью введения комплексных чисел, то есть чисел вида a+bi, где a,b — вещественные числа, i — мнимая единица — число, для которого выполняется равенство: i 2 =-1.

Интересно проследить, как менялось представление о комплексных числах с течением времени. Вот некоторые цитаты из древних трудов:

  • XVI век : Эти сложнейшие величины бесполезны, хотя и весьма хитроумны. 1
  • XVII век : Мнимые числа — это прекрасное и чудесное убежище божественного духа, почти что амфибия бытия с небытием. 2
  • XVIII век : Квадратные корни из отрицательных чисел не равны нулю, не меньше нуля и не больше нуля. Из сего видно, что квадратные корни из отрицательных чисел не могут находиться среди возможных чисел. Поэтому, нам не остается ничего другого, как признать их невозможными числами. Это ведет нас к понятию таких чисел, которые по своей природе невозможны и обычно называются мнимыми или воображаемыми, потому что их только в уме представить можно. 3
  • XIX век Никто ведь не сомневается в точности результатов, получаемых при вычислениях с мнимыми количествами, хотя они представляют собой только алгебраические формы и иероглифы нелепых количеств. 4

Известно три способа записи комплексного числа z:

Алгебраическая запись комплексного числа

,
где a и b — вещественные числа, i — мнимая единица. a — действительная часть, bi — мнимая часть.

Тригонометрическая запись комплексного числа

,
где r — модуль комплексного числа:

, который соответствует расстоянию от точки на комплексной плоскости до начала координат, а φ — угол наклона вектора 0-z к оси действительных значений или аргумент комплексного числа.

Показательная запись комплексного числа

была введена Леонардом Эйлером для сокращения тригонометрической записи.

Использование калькулятора

Для вычисления выражения необходимо ввести строку для вычисления. При вводе чисел, разделителем целой и дробной части является точка. Можно использовать скобки. Операциями над комплексными числами являются умножение (*), деление (/), сложение (+), вычитание (-), возведение в степень (^) и другие. В качестве записи комплексных чисел можно использовать показательную и алгебраическую форму. Вводить мнимую единицу i можно без знака умножения, в остальных случаях знак умножения обязателен, например, между скобками или между числом и константой. Также могут быть использованы константы: число π вводится как pi, экспонента e, любые выражения в показателе должны быть обрамлены скобками.

Пример строки для вычисления: (4.5+i12)*(3.2i-2.5)/e^(i1.25*pi) , что соответствует выражению [frac<(4<,>5 + i12)(3<,>2i-2<,>5)>25pi>>]

В калькуляторе возможно использование констант, математических функций, дополнительных операций и более сложных выражений, ознакомиться с этими возможностями вы можете на странице общих правил использования калькуляторов на этом сайте.

Сайт находится в разработке, некоторые страницы могут быть недоступны.

Новости

07.07.2016
Добавлен калькулятор для решения систем нелинейных алгебраических уравнений: перейти.

30.06.2016
На сайте реализован адаптивный дизайн, страницы адекватно отображаются как на больших мониторах, так и на мобильных устройствах.

Спонсор

РГРОнлайн.ru – мгновенное решение работ по электротехнике онлайн.

kor.giorgio@gmail.com Выход

С помощью данного калькулятора вы можете сложить, вычесть, умножить, и разделить комплексные числа.
Программа решения комплексных чисел не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс нахождения решения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Читайте также:  Нахождение стороны треугольника через синус

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Комплексное число состоит из двух частей — действительной и мнимой.
Первое поле ввода — для действительной части, второе — для мнимой.
Для правильного ввода комплексного числа нужно ввести как минимум одну часть — действительную или мнимую.

Числа в действительную или мнимую части можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так + i

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: + i
Результат: ( -frac<2> <3>- frac<7> <5>cdot i )

Целая часть отделяется от дроби знаком амперсанд: &
Ввод: + i
Результат: ( -1frac<2> <3>+ 5frac<8> <3>cdot i )

Введите действительную и мнимую части чисел ( z_1 ) и ( z_2 ).
У каждого числа нужно ввести как минимум одну часть — действительную или мнимую.

Вычислить сумму, разность, произведение и частное

В решении ошибка
Если вы считаете, что задача решена не правильно, то нажмите на эту кнопку.

Понятие комплексного числа

Определение.
Комплексными числами называют выражения вида а + bi где а и b — действительные числа, а i — некоторый символ, для которого по определению выполняется равенство i 2 = -1.

Название «комплексные» происходит от слова «составные» — по виду выражения а + bi. Число а называется действительной частью комплексного числа а + bi, а число b — его мнимой частью. Число i называется мнимой единицей. Например, действительная часть комплексного числа 2-3i равна 2, мнимая часть равна -3. Запись комплексного числа в виде а + bi называют алгебраической формой комплексного числа.

Равенство комплексных чисел

Определение.
Два комплексных числа а + bi и c + di называются равными тогда и только тогда, когда а = с и b = d, т. е. когда равны их действительные и мнимые части.

Сложение и умножение комплексных чисел

Операции сложения и умножения двух комплексных чисел определяются следующим образом.

Определения.
Суммой двух комплексных чисел а + bi и c + di называется комплексное число (a + c) + (b + d)i, т.е.
(a + bi) + (c + di) = (a + c) + (b + d)i.
Произведением двух комплексных чисел а + bi и c + di называется комплексное число (ac — bd) + (ad + bc)i, т. е.
(а + bi)(с + di) = (ас-bd) + (ad + bc)i.

Из двух предыдущих формул следует, что сложение и умножение комплексных чисел можно выполнять по правилам действий с многочленами. Поэтому нет необходимости запоминать эти формулы, их можно получить по обычным правилам алгебры, считая, что i 2 = -1.

Основные свойства сложения и умножения комплексных чисел

1. Переместительное свойство
( z_1 + z_2 = z_2 + z_1 , qquad z_1z_2 = z_2z_1 )

2. Сочетательное свойство
( (z_1 + z_2) + z_3 = z_1 + (z_2 + z_3) , qquad (z_1z_2)z_3 = z_1(z_2z_3) )

Читайте также:  Заливы надежные с темных ресурсов

3. Распределительное свойство
( z_1(z_2 + z_3) = z_1z_2 + z_1z_3 )

Комплексно сопряженные числа

Определение.
Сопряженным с числом z = a + bi называется комплексное число а -bi, которое обозначается ( overline ), т. е.
( overline
= overline = a-bi )

Например, ( overline <3 + 4i>= 3-4i, qquad overline <-2-5i>= -2+5i, qquad overline = -i )

Отметим, что ( overline = a+bi ), поэтому для любого комплексного числа z имеет место равенство
( overline<(overline)> = z )
Равенство ( overline
= z ) справедливо тогда и только тогда, когда z — действительное число.

Модуль комплексного числа

Определение.
Модулем комплексного числа z = а + bi называется число ( sqrt ), т.е.
( |z|=|a+bi| = sqrt )

Из данной формулы следует, что ( |z| geq 0 ) для любого комплексного числа z, причем |z|=0 тогда и только тогда, когда z=0, т.е. когда a=0 и b=0.

Вычитание комплексных чисел

Определение.
Комплексное число (–1)z называется противоположным комплексному числу z и обозначается –z.
Если z = a+bi, то –z = –a–bi. Например, –(3–5i) = –3+5i. Для любого комплексного числа z выполняется равенство
z+(–z) = 0.

Вычитание комплексных чисел вводится как операция, обратная сложению: для любых комплексных чисел z1 и z2 существует, и притом только одно, число z, такое, что
z + z2 = z1,
т.е. это уравнение имеет только один корень.

Деление комплексных чисел

Деление комплексных чисел вводится как операция, обратная умножению: для любых комплексных чисел ( z_1 ) и ( z_2
eq 0 ) существует, и притом только одно, число ( z ), такое, что ( zz_2=z_1 ) т.е. это уравнение относительно z имеет только один корень, который называется частным чисел ( z_1 ) и ( z_2 ) и обозначается ( z_1:z_2 ), или ( frac ), т.е. ( z=z_1:z_2 = frac )

Комплексное число нельзя делить на нуль.

Частное комплексных чисел ( z_1 ) и ( z_2
eq 0 ) можно найти по формуле
( large frac = frac> <|z_2|^2>)

Каждое комплексное число z, не равное нулю, имеет обратное ему число w, такое, что z*w = 1, где
( large w= frac<1> = frac-fraci )

Геометрическая интерпретация комплексного числа. Комплексная плоскость

Действительные числа геометрически изображаются точками числовой прямой. Комплексное число а + bi можно рассматривать как пару действительных чисел (а; b). Поэтому естественно комплексные числа изображать точками плоскости.

Пусть на плоскости задана прямоугольная система координат. Комплексное число z = a + bi изображается точкой плоскости с координатами (а; b), и эта точка обозначается той же буквой z.

Такое соответствие между комплексными числами и точками плоскости взаимно однозначно: каждому комплексному числу а + bi соответствует одна точка плоскости с координатами (а; b) и, наоборот, каждой точке плоскости с координатами (а; b) соответствует одно комплексное число a + bi. Поэтому слова «комплексное число» и «точка плоскости» часто употребляются как синонимы. Так, вместо слов «точка, изображающая число 1 + i» говорят «точка 1 + i». Можно, например, сказать «треугольник с вершинами в точках i, 1+i, -i».

При такой интерпретации действительные числа a, т.е. комплексные числа а+0i, изображаются точками с координатами (а; 0), т.е. точками оси абсцисс. Поэтому ось абсцисс называют действительной осью. Чисто мнимые числа bi = 0+bi изображаются точками с координатами (0; b), т.е. точками оси ординат, поэтому ось ординат называют мнимой осью. При этом точка с координатами (0; b) обозначается bi. Например, точка (0; 1) обозначается i, точка (0; -1) — это -i , точка (0; 2) — это точка 2i. Начало координат — это точка O. Плоскость, на которой изображаются комплексные числа, называют комплексной плоскостью.

Читайте также:  В чем разница между viber и whatsapp

Отметим, что точки z и -z симметричны относительно точки 0 (начала координат), а точки ( z ) и ( overline ) симметричны относительно действительной оси.

Комплексное число z = a+bi можно изображать вектором с началом в точке 0 и концом в точке z. Этот вектор будем обозначать той же буквой z, длина этого вектора равна |z|.

Число z1 + z2 изображается вектором, построенным по правилу сложения векторов z1 и z2 а вектор z1-z2 можно построить как сумму векторов z1 и -z2.

Геометрический смысл модуля комплексного числа

Выясним геометрический смысл модуля комплексного числа |z|. Пусть z = а+bi. Тогда по определению модуля ( |z|= sqrt ). Это означает, что |z| — расстояние от точки 0 до точки z.

Например, равенство |z| = 4 означает, что расстояние от точки 0 до точки z равно 4. Поэтому множество всех точек z, удовлетворяющих равенству |z| = 4, является окружностью с центром в точке 0 радиуса 4. Уравнение |z| = R является уравнением окружности с центром в точке 0 радиуса R, где R — заданное положительное число.

Геометрический смысл модуля разности комплексных чисел

Выясним геометрический смысл модуля разности двух комплексных чисел, т.е. |z1—z2|.
Пусть z1 = a1+b1i, z2 = a2+b2i.
Тогда ( |z_1-z_2| = |(a_1-a_2) + (b_2-b_2)i| = sqrt <(a_1+a_2)^2 + (b_1+b_2)^2>)

Из курса геометрии известно, что это число равно расстоянию между точками с координатами (а1; b1) и (a2; b2).

Тригонометрическая форма комплексного числа. Аргумент комплексного числа

Определение
Аргумент комплексного числа ( z
eq 0 ) — это угол ( varphi ) между положительным направлением действительной оси и вектором Oz. Этот угол считается положительным, если отсчет ведется против часовой стрелки, и отрицательным при отсчете по часовой стрелке.

Связь между действительной и мнимой частями комплексного числа z = а + bi, его модулем r=|z| и аргументом ( varphi ) выражается следующими формулами:
( left< egin a=r cos varphi \ b=r sin varphi end qquad (1)
ight. )

Аргумент комплексного числа z = a+bi ( ( z
eq 0 ) ) можно найти, решив систему (2). Эта система имеет бесконечно много решений вида ( varphi =varphi_0+2kpi ), где ( kinmathbb , ;; varphi_0 ) — одно из решений системы (1), т.е. аргумент комплексного числа определяется неоднозначно.

Для нахождения аргумента комплексного числа z = а+bi ( ( z
eq 0 ) ) можно воспользоваться формулой
( tg varphi = large frac
ormalsize qquad (3) )

При решении уравнения (3) нужно учитывать, в какой четверти находится точка z = а+bi.

Запись комплексного числа в тригонометрической форме

Из равенства (1) следует, что любое комплексное число z = a+bi, где ( z
eq 0 ), представляется в виде
( z = r(cosvarphi +isinvarphi ) qquad (4) )
где ( r=|z|=sqrt ) — модуль комплексного числа z, ( varphi ) — его аргумент. Запись комплексного числа в виде (4), где r>0, называют тригонометрической формой комплексного числа z.

Умножение и деление комплексных чисел, записанных в тригонометрической форме

С помощью тригонометрической формы записи комплексных чисел удобно находить произведение и частное комплексных чисел z1 и z2. Если два комплексных числа записаны в тригонометрической форме:
( z_1 = r_1(cosvarphi_1 +isinvarphi_1), quad z_2 = r_2(cosvarphi_2 +isinvarphi_2) ) то произведение этих комплексных чисел можно найти по формуле:
( z_1z_2 = r_1r_2(cos(varphi_1+varphi_2) +isin(varphi_1+varphi_2)) )

Из этой формулы следует, что при перемножении комплексных чисел их модули перемножаются, а аргументы складываются.

Формула для нахождения частного комплексных чисел:
( frac = frac(cos(varphi_1-varphi_2) +isin(varphi_1-varphi_2)) )

Из этой формулы следует, что модуль частного двух комплексных чисел равен частному модулей делимого и делителя, а разность аргументов делимого и делителя является аргументом частного.

Формула Муавра

Для любого ( n in mathbb ) справедлива формула
( z^n = r^n(cos varphi + i sin varphi)^n = r^n(cos (nvarphi) + i sin (nvarphi) ) ) которую называют формулой Муавра.

Ссылка на основную публикацию
Скопировать контакты с андроид на компьютер
Мы уже рассказывали о том, как скопировать контакты со смартфона на смартфон. Но иногда проще перебросить контактную книгу на компьютер....
Скайп не приходят сообщения
Общение – основная цель любого мессенджера, и Скайп – не исключение. Бывает, что сообщения в Скайпе не отправляются – эта...
Скайп предыдущие версии с официального сайта
На данной странице представлены все версии Скайп для компьютера (полноценные инсталляторы скаченные с официального сайта) и телефона, выпущенные за последние...
Скопировать строку таблицы значений 1с в другую
Не претендуя на полноту описания функций и методов работы с таблицей значений 1с привожу некоторые аспекты, которые в своё время...
Adblock detector