Скорость свободного падения в воде

Скорость свободного падения в воде

В пустоте все тела падают с одинаковой скоростью, но в любой среде — воде, воздухе, суспензии и т. д. — скорость падения тел меньше, так как среда оказывает сопротивление падающему телу.

Сопротивление среды движению тела складывается из дина­мического сопротивления и сопротивления трения, соотношение между которыми зависит от характера движения.

Движение тела в среде может иметь турбулентный или лами­нарный режим.

При турбулентном режиме,характеризуемом большой скоростью движения тела, происходит завихрение струй среды. В этом случае кинетическая энергия движущегося тела расходуется главным образом на преодоление инерции покоя массы среды и лишь в небольшой части на преодоление трения среды.

Падающие с большой скоростью тела встречают, таким образом, со стороны среды сопротивление сил инерции или динамическое сопротивление.

Для ламинарного режима характерна малая скорость движения тел. Струи среды, обтекая падающее тело, следуют за его очертаниями, не образуя завихрений. Кинетическая энергия падающего тела при ламинарном режиме движения расходуется главным образом на преодоление сил трения тела о среду и вза­имного трения самих частиц среды.

Падающее в спокойной среде тело с малой скоростью встречает со стороны среды сопротивление трения или вязкости. Дина­мическое сопротивление в данном случае незначительно.

С увеличением скорости движения роль динамического сопро­тивления усиливается, а роль сопротивления сил трения умень­шается.

По Ньютону, динамическое сопротивление неподвижной вод­ной среды при падении в ней шара со скоростью v выразится формулой:

По закону Архимеда, вес шара в воде составляет:

Результирующая сила Q, являющаяся причиной ускорения тела при падении его в воде, равна:

Эта сила действует на массу m:

Ускорение шара, падающего в воде, может быть представлено в следующем виде:

или после замены величин Q и т их значениями

Из выражения видим, что ускорение шара, падающего в воде, зависит от скорости его падения. В начальный момент падения в среде тело имеет скорость и ускорение его

Период ускорения тела продолжается незначительные доли секунды. В дальнейшем с увеличением скорости падения v увеличивается сопротивление среды, уменьшается ускорение и наступает момент установившегося движения, когда шар начинает падать с постоянной скоростью.Эта скорость называется конечной скоростью паденияv. При этом ускорение =0 и согласно формуле

Отсюда находим значение конечной скорости по Ньютону — Риттингеру

Из этой формулы видно, что чем больше размер d и плотность р падающего тела, тем больше конечная скорость его падения в воде. Однако для очень мелких зерен эта формула непригодна, так как в ней не учтено внутреннее трение частиц жидкости между собой и о поверхность падающего тела. Для мелких частиц этот вид сопротивления играет единственную роль и оно может быть выражено по Стоксу

Формула Риттингера (приведенная выше) применима для зерен шарообразной формы с диаметром более 1-2 мм, а для мелких зерен (диаметром менее 0,12-0,18 мм) применима формула Стокса

Существует формула для определения конечной скорости в общем виде,пригодная для зерен любого диаметра,

В этой формуле необходимо знать значение коэффициента со­противления среды ψ (коэффициент Рейлея).

Профессор П. В. Лященко предложил метод расчета конечной скорости падения тел в любой жидкой среде.

где Re-число Рейнольдса (безразмерная величина);

d — диаметр шарообразного тела, м;

При реальных физических движениях тел в газовой или жидкостной среде трение накладывает огромный отпечаток на характер движения. Каждый понимает, что предмет, сброшенный с большой высоты (например, парашютист, прыгнувший с самолета), вовсе не движется равноускоренно, так как по мере набора скорости возрастает сила сопротивления среды. Даже эту. относительно несложную, задачу нельзя решить средствами «школьной» физики; таких задач, представляющих практический интерес, очень много. Прежде чем приступать к обсуждению соответствующих моделей, вспомним, что известно о силе сопротивления.

Закономерности, обсуждаемые ниже, носят эмпирический характер и отнюдь не имеют столь строгой и четкой формулировки, как второй закон Ньютона. О силе сопротивления среды движущемуся телу известно, что она, вообще говоря, растет с ростом скорости (хотя это утверждение не является абсолютным). При относительно малых скоростях величина силы сопротивления пропорциональна скорости и имеет место соотношение Fcoпp = k1v, где k1 определяется свойствами среды и формой тела. Например, для шарика k1 = 6πμr — это формула Стокса, где μ -динамическая вязкость среды, r — радиус шарика. Так, для воздуха при t = 20°С и давлении 1 атм = 0,0182 Н∙с∙м -2 , для воды 1,002 Н∙с∙м -2 , для глицерина 1480 Н∙с∙м -2 .

Оценим, при какой скорости для падающего вертикально шара сила сопротивления сравняется с силой тяжести (и движение станет равномерным).

Пусть r = 0,1 м, ρ = 0,8∙10 3 кг/м 3 (дерево). При падении в воздухе v* ≈ 960 м/с, в воде v*≈ 17 м/с, в глицерине v* ≈ 0,012 м/с.

На самом деле первые два результата совершенно не соответствуют действительности. Дело в том, что уже при гораздо меньших скоростях сила сопротивления становится пропорциональной квадрату скорости: Fcoпp = k2v 2 . Разумеется, линейная по скорости часть силы сопротивления формально также сохранится, но если k2v 2 >> k1v, то вкладом k1v можно пренебречь (это конкретный пример ранжирования факторов). О величине k2 известно следующее: она пропорциональна площади сечения тела S, поперечного по отношению к потоку, и плотности среды ρсреды и зависит от формы тела. Обычно представляют k2 = 0,5сSρсрeды, где с — коэффициент лобового сопротивления — безразмерен. Некоторые значения с (для не очень больших скоростей) приведены на рис. 7.6.

Читайте также:  Картинки для срисовки узоры легкие и красивые

При достижении достаточно большой скорости, когда образующиеся за обтекаемым телом вихри газа или жидкости начинают интенсивно отрываться от тела, значение с в несколько раз уменьшается; для шара оно становится приблизительно равным 0,1. Подробности можно найти в специальной литературе.

Вернемся к указанной выше оценке, исходя из квадратичнойзависимости силысопротивления от скорости.

(7.4)

Рис. 7.6. Значения коэффициента лобового сопротивления для некоторых тел, поперечное сечение которых имеет указанную на рисунке форму (см. книгу П.А.Стрелкова)

(7.5)

Примем r = 0,1 м, ρ = 0,8∙10 3 кг/м 3 (дерево). Тогда для движения в воздухе (ρвозд= 1,29 кг/м 3 ) получаем v* ≈ 18 м/с, в воде (ρводы ≈ 1∙10 3 кг/м 3 ) v* ≈ 0,65 м/с, в глицерине (ρглицерина = 1,26∙10 3 кг/м 3 ) v* ≈ 0,58 м/с.

Сравнивая с приведенными выше оценками линейной части силы сопротивления, видим, что для движения в воздухе и в воде ее квадратичная часть сделает движение равномерным задолго до того, как это могла бы сделать линейная часть, а для очень вязкого глицерина справедливо обратное утверждение. Рассмотрим свободное падение с учетом сопротивления среды. Математическая модель движения — уравнение второго закона Ньютона с учетом двух сил, действующих на тело; силы тяжести и силы сопротивления среды:

(7.6)

Движение является одномерным; проецируя векторное уравнение на ось, направленную вертикально вниз, получаем

(7.7)

Вопрос, который мы будем обсуждать на первом этапе, таков: каков характер изменения скорости со временем, если все параметры, входящие в уравнение (7.7), заданы? При такой постановке модель носит сугубо дескриптивный характер. Из соображений здравого смысла ясно, что при наличии сопротивления, растущего со скоростью, в какой-то момент сила сопротивления сравняется с силой тяжести, после чего скорость больше возрастать не будет. Начиная с этого момента, dv/dt = 0, и соответствующую установившуюся скорость можно найти из условия mg – k1v – k2v 2 = 0 , решая не дифференциальное, а квадратное уравнение. Имеем

(7.8)

(второй — отрицательный — корень, естественно, отбрасываем). Итак, характер движения качественно таков: скорость при падении возрастает от v до ; как и по какому закону — это можно узнать, лишь решив дифференциальное уравнение (7.7).

Однако, даже в столь простой задаче мы пришли к дифференциальному уравнению, которое не относится ни к одному из стандартных типов, выделяемых в учебниках по дифференциальным уравнениям, допускающих очевидным образом аналитическое решение. II хотя это не доказывает невозможность его аналитического решения путем хитроумных подстановок, но они не очевидны (один из лучших помощников в их поиске — справочник Камке). Допустим, однако, что нам удастся найти такое решение, выраженное через суперпозицию нескольких алгебраических и трансцендентных функций — а как найти закон изменения во времени перемещения? — Формальный ответ прост:

(7.9)

но шансы на реализацию этой квадратуры уже совсем невелики. Дело в том, что класс привычных нам элементарных функций очень узок, и совершенно стандартна ситуация, когда интеграл от суперпозиции элементарных функций не может быть выражен через элементарные функции в принципе. Математики давно расширили множество функций, с которыми можно работать почти так же просто, как с элементарными (т.е. находить значения, различные асимптотики, строить графики, дифференцировать, интегрировать). Тем, кто знаком с функциями Бесселя, Лежандра, интегральными функциями и еще двумя десятками других, так называемых, специальных функций, легче находить аналитические решения задач моделирования, опирающихся на аппарат дифференциальных уравнений. Однако даже получение результата в виде формулы не снимает проблемы представления его в виде, максимально доступном для понимания, чувственного восприятия, ибо мало кто может, имея формулу, в которой сопряжены логарифмы, степени, корни, синусы и тем более специальные функции, детально представить себе описываемый ею процесс -а именно это есть цель моделирования.

В достижении этой цели компьютер — незаменимый помощник. Независимо от того, какой будет процедура получения решения — аналитической или численной, -задумаемся об удобных способах представления результатов. Разумеется, колонки чисел, которых проще всего добиться от компьютера (что при табулировании формулы, найденной аналитически, что в результате численного решения дифференциального уравнения), необходимы; следует лишь решить, в какой форме и размерах они удобны для восприятия. Слишком много чисел в колонке быть не должно, их трудно будет воспринимать, поэтому шаг, с которым заполняется таблица, вообще говоря, гораздо больше шага, с которым решается дифференциальное уравнение в случае численного интегрирования, т.е. далеко не все значения v и S, найденные компьютером, следует записывать в результирующую таблицу (табл. 7.2).

Зависимость перемещения и скорости падения «безпарашютиста» от времени (от 0 до 15 с)

t(c) s(m) v (м/с) t(с) S(м) v (м/с)
200,1 35,6
4,8 9,6 235,9 36,0
18,7 17,9 272,1 36,3
40,1 24,4 308,5 36,4
66,9 28,9 345,0 36,5
97,4 31,9 381,5 36,6
130,3 33,8 418.1 36,6
164,7 35,0 454,7 36,6

Кроме таблицы необходимы графики зависимостей v(t) и S(t); по ним хорошо видно, как меняются со временем скорость и перемещение, т.е. приходит качественноепонимание процесса.

Еще один элемент наглядности может внести изображение падающего тела через равные промежутки времени. Ясно, что при стабилизации скорости расстояния между изображениями станут равными. Можно прибегнуть и к цветовой раскраске — приему научной графики, описанному выше.

Читайте также:  Кнопка звук на панели задач

Наконец, можно запрограммировать звуковые сигналы, которые подаются через каждый фиксированный отрезок пути, пройденный телом — скажем, через каждый метр или каждые 100 метров — смотря по конкретным обстоятельствам. Надо выбрать интервал так, чтобы вначале сигналы были редкими, а потом, с ростом скорости, сигнал слышался все чаще, пока промежутки не сравняются. Таким образом, восприятию помогают элементы мультимедиа. Поле для фантазии здесь велико.

Приведем конкретный пример решения задачи о свободно падающем теле. Герой знаменитого фильма «Небесный тихоход» майор Булочкин, упав с высоты 6000 м в реку без парашюта, не только остался жив, но даже смог снова летать. Попробуем понять, возможно ли такое на самом деле или же подобное случается только в кино. Учитывая сказанное выше о математическом характере задачи, выберем путь численного моделирования. Итак, математическая модель выражается системой дифференциальных уравнений

(7.10)

Разумеется, это не только абстрактное выражение обсуждаемой физической ситуации, но и сильно идеализированное, т.е. ранжирование факторов перед построением математической модели произведено. Обсудим, нельзя ли произвести дополнительное ранжирование уже в рамках самой математической модели с учетом конкретно решаемой задачи, а именно — будет ли влиять на полет парашютиста линейная часть силы сопротивления и стоит ли ее учитывать при моделировании.

Так как постановка задачи должна быть конкретной, мы примем соглашение, каким образом падает человек. Он — опытный летчик и наверняка совершал раньше прыжки с парашютом, поэтому, стремясь уменьшить скорость, он падает не «солдатиком», а лицом вниз, «лежа», раскинув руки в стороны. Рост человека возьмем средний — 1,7 м, а полуобхват грудной клетки выберем в качестве характерного расстояния — это приблизительно 0,4 м. Для оценки порядка величины линейной составляющей силы сопротивления воспользуемся формулой Стокса. Для оценки квадратичной составляющей силы сопротивления мы должны определиться со значениями коэффициента лобового сопротивления и площадью тела. Выберем в качестве коэффициента число с = 1,2 как среднее между коэффициентами для диска и для полусферы (выбор для качественной оценки правдоподобен). Оценим площадь: S = 1,7∙0,4=0,7 (м 2 ).

Выясним, при какой скорости сравняются линейная и квадратичная составляющие силы сопротивления. Обозначим эту скорость v**. Тогда

Ясно, что практически с самого начала скорость падения майора Булочкина гораздо больше, и поэтому линейной составляющей силы сопротивления можно пренебречь, оставив лишь квадратичную составляющую.

После оценки всех параметров можно приступить к численному решению задачи. При этом следует воспользоваться любым из известных численных методов интегрирования систем обыкновенных дифференциальных уравнений: методом Эйлера, одним из методов группы Рунге — Кутта, одним из многочисленных неявных методов. Разумеется, у них разная устойчивость, эффективность и т.д. — эти сугубо математические проблемы здесь не обсуждаются. Программа, реализующая метод Рунге — Кутта четвертого порядка, может быть взята из примера, приведенного в следующем параграфе или из какого-нибудь стандартного пакета математических программ.

Отметим, что существует немало программ, моделирующих простые физические процессы типа рассматриваемого. У них реализован, в той или иной мере профессионально, диалоговый интерфейс, позволяющий вводить параметры, получать на экране таблицы, графики, движущиеся изображения. Однако в них, как правило, остаются скрытыми физические законы, определяющие процесс, ограничения модели, возможности ее усовершенствования. Такие программы полезны скорее как сугубо иллюстративные.

Вычисления производились до тех пор, пока «безпарашютист» не опустилсянаводу. Примерно через 15 с после начала полета скорость стала постоянной и оставалась такой до приземления (рис. 7.7). Отметим, что в рассматриваемой ситуации сопротивление воздуха радикально меняет характер движения; при отказе от его учета график скорости, изображенный на рисунке, заменился бы касательной к нему в начале координат.

Рис. 7.7. График зависимости скорости падения «безпарашютиста» от времени

В некоторых случаях для ускорения процесса работы над какой-либо задачей целесообразно вместо составления программы воспользоваться готовой прикладной программой (например, табличным процессором). Покажем это на примере рассматриваемой задачи. В табл. 7.3 представлен небольшой фрагмент из табличного процессора Excel. Решение находится с помощью, так называемого, исправленного метода Эйлера — одного из возможных вариантов метода Рунге — Кутта второго порядка.

Кроме того, в ячейках D2, D4, D6 в таблице будем хранить соответственно значения шага вычислений, массы «безпарашютиста», величины mg. Это связано с тем, что все константы также удобно хранить в отдельных ячейках, чтобы в случае их изменения не пришлось переписывать расчетные формулы. Достаточно записать

Фрагмент таблицы, где представлено решение задачи о «безпарашютнсте»

А В
t v
=СУММ(АЗ; D2) =B3+D2/2* ( (D6-D8*B3^2) /D4+(D6-D8*(B3+D2*(D6-D8*B3^2)/D4)^2)/D4)
=СУММ(А4; D2) =B4+D2/2* ( (D6-D8*B4^2) /D4+(D6-D8* (B4+D2* (D6- D8*B4^2)/D4)^2)/D4)
=СУММ(А5; D2) =B5+D2/2*( (D6-D8*B5^2)/D4+(D6-D8*(B5+D2*(D6-D8*B5^2)/D4)^2)/D4)
=СУМM(А6; D2) =B6+D2/2* ( (D6-D8*B6^2) /D4+ (D6-D8* (B6+D2* (D6-D8*B6^2)/D4)^2)/D4)
=СУММ(А7; D2) =B7+D2/2*((D6-D8*B7^2)/D4+(D6-D8*(B7+D2*(D6-D8*B7^2)/D4)^2)/D4)

формулу правильно один раз, а затем скопировать в остальные ячейки, при этом, как известно, она «настраивается» на соответствующую ячейку.

Дата публикования: 2014-11-02 ; Прочитано: 2403 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2020 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.004 с) .

Прыжки в воду – одно из увлекательнейших времяпрепровождений, которому подвержены и взрослые, и дети. История этого занятия имеет глубокие корни. Издревле у народов многих стран находились смельчаки, которые, потехи ради бросались в моря и реки со скал, мостов, корабельных мачт. Индусы, например, прыгали прямо в глубокий, наполненный водой колодец с вершины 20-метрового храма. Молодые швейцарские и румынские прыгуны еще почти полтысячелетия назад славились своим умением нырять с мостов. Поразительно, но именно из-за боязни быть разрезанным пополам они прыгали не ногами вниз – «солдатиком», а исключительно головой вниз. Французские циркачи умудрялись прыгать в реку даже на велосипедах и лошадях. Немало и у нас на Руси было такого рода прыгунов, которые не боялись прыгать с достаточно большой высоты. Видом спорта это увлечение было признано на II летних Олимпийских играх в Париже в 1900 году. При этом решившиеся выполнять сложные прыжки храбрецы одевали свитера или специальные стеганые куртки, так как прыжки в воду с большой высоты требуют серьёзной спортивной подготовки и несут не только самоудовлетворение, но и опасность. Давайте попробуем разобраться, что нужно знать, чтобы, прыгая в воду, уберечься от ушибов и травм.

Читайте также:  Appdata microsoft windows recent automaticdestinations

Прыжки в воду осуществляются с некоторой высоты, как правило, с какой-то начальной скоростью. После начала прыжка и до входа в воду прыгун движется в воздухе под действием двух сил: силы тяжести и силы сопротивления воздуха . Последняя достаточно мала, и ей можно пренебречь в наших расчетах. С учетом этого рассчитаем, какую скорость будет иметь человек у поверхности воды, если он прыгал с высоты и имел начальную скорость , направленную под углом к горизонту. Определим также дальность прыжка – расстояние по горизонтали от начальной точки до точки входа в воду.

Скорость легко определяется, исходя из закона сохранения энергии:

где – ускорение свободного падения, – масса человека, – скорость входа в воду. После математических преобразований получаем:

Таким образом, если прыжок выполняется с высоты 5 м с начальной скоростью 4 м/с, то скорость входа в воду будет примерно 10,7 м/с или 39 км/ч. Это достаточно большая скорость, и при столкновении с водой может привести к ушибам и травмам. Самый безопасный вход в воду – ногами вниз («солдатиком») или головой с вытянутыми вперед руками для смягчения удара о воду («рыбкой»). Но последний вариант гораздо сложнее выполнить, так как во время полета очень трудно управлять вращением тела и возможно столкновение с водой животом или спиной, а при большой скорости – это небезопасно. Спортсмены, которые занимаются прыжками в воду, много тренируются, чтобы научиться управлять своим телом во время прыжка и осуществлять вход в воду практически без брызг. При этом, чем выше начальная точка прыжка, тем труднее его выполнить безопасно для себя. И нужно хорошо подумать прежде, чем рисковать. Тем более что длительность прыжка очень небольшая, например, прыжок с высоты 5 м длится около 1 с.

Рассчитаем теперь дальность прыжка. Для этого нужно воспользоваться кинематическими уравнениями для равноускоренного движения и составить систему:

.

Исключив длительность прыжка , находим максимальную дальность прыжка, которая получается, если угол равен 45 0 :

Таким образом, если прыжок выполняется с высоты 5 м с начальной скоростью 4 м/с, то максимальная дальность прыжка будет 3,8 м, а с начальной скоростью 2м/с – 1,6 м. Это нужно учитывать, чтобы управлять местом входа в воду. При осуществлении прыжка в воду также необходимо учитывать глубину водоема, чтобы не удариться о дно или другие небезопасные предметы, лежащие на нем и не видные сверху. В этом случае опасные места обозначаются специальными табличками, которые ни в коем случае нельзя игнорировать.

Давайте рассчитаем глубину погружения , если скорость входа в воду равна . При рассматриваемых скоростях и прыжке «рыбкой» можно считать, что сила гидродинамического сопротивления воды постоянна и равна примерно 1000 H. Кроме того, так как средняя плотность человека примерно равна плотности воды, то сила тяжести уравновешивается силой Архимеда. Тогда, используя закон сохранения и превращения энергии, получим:

Таким образом, если скорость входа в воду 10 м/с, которая получается при прыжке с высоты 5 м, без начальной скорости, а масса человека 50 кг, то глубина погружения будет 2,5 м. Для того чтобы ее уменьшить, необходимо или увеличить силу гидродинамического сопротивления воды за счет изменения формы тела при помощи рук или ног, или прыгать с меньшей высоты. Например, при прыжке с высоты 2 м без начальной скорости, скорость входа в воду будет примерно 6,3м/с, а глубина погружения – около 1м.

Некоторые животные так же, как и люди, любят нырять в воду. Например, собаки бесстрашно бросаются за мячиком, брошенным хозяином, и это, зачастую, выглядит довольно забавно, особенно под водой.

Предлагаем Вам по предложенному методу решить задачу:

Рассчитайте, с какой скоростью и на каком расстоянии от вышки прыгун массой 60 кг войдет в воду, на какую глубину он погрузится, если он прыгал с вышки высотой 10 м с начальной скоростью 5 м/с под углом 30 0 к горизонту. Сопротивлением воздуха пренебречь. Силу гидродинамического сопротивления воды считать постоянной и равной 1000 Н.

Автор: Матвеев К.В., методист ГМЦ ДО г. Москвы

Ссылка на основную публикацию
Скопировать контакты с андроид на компьютер
Мы уже рассказывали о том, как скопировать контакты со смартфона на смартфон. Но иногда проще перебросить контактную книгу на компьютер....
Скайп не приходят сообщения
Общение – основная цель любого мессенджера, и Скайп – не исключение. Бывает, что сообщения в Скайпе не отправляются – эта...
Скайп предыдущие версии с официального сайта
На данной странице представлены все версии Скайп для компьютера (полноценные инсталляторы скаченные с официального сайта) и телефона, выпущенные за последние...
Скопировать строку таблицы значений 1с в другую
Не претендуя на полноту описания функций и методов работы с таблицей значений 1с привожу некоторые аспекты, которые в своё время...
Adblock detector