Сколькими способами можно 9 яблок распределить

Сколькими способами можно 9 яблок распределить

Комбинаторика — это наука, с который каждый встречается в повседневной жизни: сколько способов выбрать 3 дежурных для уборки класса или сколько способов составить слово из данных букв. В целом, комбинаторика позволяет вычислить, сколько различных комбинаций, согласно некоторым условиям, можно составить из заданных объектов (одинаковых или разных).

Как наука комбинаторика возникла еще в 16 веке, а теперь ее изучает каждый студент (и зачастую даже школьник). Начинают изучение с понятий перестановок, размещений, сочетаний (с повторениями или без), на эти темы вы найдете задачи и ниже. Наиболее известные правила комбинаторики — правила суммы и произведения, которые чаще всего применяются в типовых комбинаторных задачах.

Ниже вы найдете несколько примеров задач с решениями на комбинаторные понятия и правила, которые позволят разобраться с типовыми заданиями. Если есть трудности с задачами — заказывайте контрольную по комбинаторике.

Калькуляторы онлайн и примеры

Задачи по комбинаторике с решениями онлайн

Задача 1. У мамы 2 яблока и 3 груши. Каждый день в течение 5 дней подряд она выдает по одному фрукту. Сколькими способами это может быть сделано?

Задача 2. Предприятие может предоставить работу по одной специальности 4 женщинами, по другой — 6 мужчинам, по третьей — 3 работникам независимо от пола. Сколькими способами можно заполнить вакантные места, если имеются 14 претендентов: 6 женщин и 8 мужчин?

Задача 3. В пассажирском поезде 9 вагонов. Сколькими способами можно рассадить в поезде 4 человека, при условии, что все они должны ехать в различных вагонах?

Задача 4. В группе 9 человек. Сколько можно образовать разных подгрупп при условии, что в подгруппу входит не менее 2 человек?

Задача 5. Группу из 20 студентов нужно разделить на 3 бригады, причем в первую бригаду должны входить 3 человека, во вторую — 5 и в третью — 12. Сколькими способами это можно сделать.

Задача 6. Для участия в команде тренер отбирает 5 мальчиков из 10. Сколькими способами он может сформировать команду, если 2 определенных мальчика должны войти в команду?

Задача 7. В шахматном турнире принимали участие 15 шахматистов, причем каждый из них сыграл только одну партию с каждым из остальных. Сколько всего партий было сыграно в этом турнире?

Задача 8. Сколько различных дробей можно составить из чисел 3, 5, 7, 11, 13, 17 так, чтобы в каждую дробь входили 2 различных числа? Сколько среди них будет правильных дробей?

Задача 9. Сколько слов можно получить, переставляя буквы в слове Гора и Институт?

Задача 10. Каких чисел от 1 до 1 000 000 больше: тех, в записи которых встречается единица, или тех, в которых она не встречается?

Готовые примеры

Нужны решенные задачи по комбинаторике? Найди в решебнике:

Задача 31:

6 ящиков занумерованы числами от 1 до 6. Сколькими способами можно разложить по этим ящикам 20 одинаковых шаров так, чтобы ни один ящик не оказался пустым?

Решение:

Выложим шары в ряд. Для определения расклада наших шаров по шести ящикам разделим ряд пятью перегородками на шесть групп: первая группа для первого ящика, вторая – для второго и так далее. Таким образом, число вариантов раскладки шаров по ящикам равно числу способов расположения пяти перегородок. Перегородки могут стоять на любом из 19 мест (между 20 шарами – 19 промежутков). Поэтому число их возможных расположений равно .

Задача 32:

6 ящиков занумерованы числами от 1 до 6. Сколькими способами можно разложить по этим ящикам 20 одинаковых шаров (на этот раз некоторые ящики могут оказаться пустыми)?

Решение:

Рассмотрим ряд из 25 предметов: 20 одинаковых шаров и 5 одинаковых перегородок, расположенных в произвольном порядке. Каждый такой ряд однозначно соответствует некоторому способу раскладки шаров по ящикам: в первый ящик попадают шары, расположенные левее первой перегородки, во второй – расположенные между первой и второй перегородками и т.д. (между какими-то перегородками шаров может и не быть). Поэтому число способов раскладки шаров по ящикам равно числу различных рядов из 20 шаров и 5 перегородок, т.е. равно (ряд определяется теми пятью местами из 25, на которых стоят перегородки).

Задача 33:

Сколькими способами натуральное число n можно представить в виде суммы

а) k натуральных слагаемых;

б) k неотрицательных целых слагаемых (представления, отличающиеся порядком слагаемых, считаются различными)?

Решение:

Указание. Представим n в виде суммы n единиц: n = 1 + 1 + … + 1. Назовем теперь эти n единиц «шарами», а k слагаемых из условия задачи – «ящиками». Ответ: а) ; б) .

Задача 34:

Сколькими способами 12 пятаков можно разложить по 5 различным кошелькам так, чтобы ни один кошелек не оказался пустым?

Читайте также:  Принцип работы энергосберегающей лампы схема

Решение:

.

Задача 35:

Переплетчик должен переплести 12 одинаковых книг в красный, зеленый или синий переплеты. Сколькими способами он может это сделать?

Решение:

.

Задача 36:

Сколькими способами можно разрезать ожерелье, состоящее из 30 различных бусин на 8 частей (резать можно только между бусинами)?

Решение:

Нужно указать 8 мест из 30, в которых будут произведены разрезы. Ответ: .

Задача 37:

30 человек голосуют по 5 предложениям. Сколькими способами могут распределиться голоса, если каждый голосует только за одно предложение и учитывается лишь количество голосов, поданных за каждое предложение?

Решение:

.

Задача 38:

В почтовом отделении продаются открытки 10 видов. Сколькими способами можно купить в нем

в) 8 различных открыток?

Решение:

а) ; б) ; в) 10!/2! = 1814400.

Задача 39:

Поезду, в котором находится m пассажиров, предстоит сделать n остановок.

а) Сколькими способами могут выйти пассажиры на этих остановках?

б) Решите ту же задачу, если учитывается лишь количество пассажиров, вышедших на каждой остановке.

Решение:

а) n m ; б) .

Задача 40:

В кошельке лежит по 20 монет достоинством в 10, 15 и 20 копеек. Сколькими способами можно из этих 60 монет выбрать двадцать?

Решение:

.

Задача 41:

Сколькими способами можно расположить в 9 лузах 7 белых и 2 черных шара? Часть луз может быть пустой, а лузы считаются различными.

Решение:

.

Задача 42:

Сколькими способами 3 человека могут разделить между собой 6 одинаковых яблок, один апельсин, одну сливу и один мандарин?

Решение:

.

Задача 43:

Сколькими способами 4 черных шара, 4 белых шара и 4 синих шара можно разложить в 6 различных ящиков?

Решение:

.

Задача 44:

Общество из n членов выбирает из своего состава одного представителя.

а) Сколькими способами может произойти открытое голосование, если каждый голосует за одного человека (быть может, и за себя)?

б) Решите ту же задачу, если голосование – тайное, т.е. учитывается лишь число голосов, поданных за каждого кандидата, и не учитывается, кто за кого голосовал персонально.

Решение:

а) n n ; б) .

Задача 45:

Сколькими способами можно выложить в ряд 5 красных, 5 синих и 5 зеленых шаров так, чтобы никакие два синих шара не лежали рядом?

Решение:

.

Задача 46:

Сколькими способами можно представить 1000000 в виде произведения трех множителей, если произведения, отличающиеся порядком множителей, считаются различными?

Решение:

1000000 = 2 6 • 5 6 . Каждый множитель однозначно определяется количеством двоек и пятерок, входящих в его разложение. Суммарное количество в трех множителях как двоек, так и пятерок, равно 6. Ответ: .

Задача 47:

На полке стоит 12 книг. Сколькими способами можно выбрать из них 5 книг, никакие две из которых не стоят рядом?

Решение:

Рассмотрите 7 оставшихся на полке книг. Между каждыми двумя соседними (и справа и слева от крайних) либо есть пустое место (от одной вынутой книги) либо нет. Набор пустых мест однозначно определяет комплект вынутых книг. Ответ: .

Зашифуем каждую комбинацию с помощью нулей и единиц: для каждого типа напишем столько единиц, сколько предметов этого типа входит в комбинацию, а предметы различных типов отделить нулями. При этом число единиц будет k, а число нулей – n–1. Различным комбинациям будут соответствовать различные перестановки с повторениями из k элементов первого вида и n–1 элементов второго вида, а каждой перестановке с повторениями – своя комбинация. Итак, .

Встречаются задачи, в которых на сочетания с повторениями накладывается дополнительное условие, например, когда в комбинацию обязательно должны входить элементы r фиксированных типов, где r≤n. Эта задача легко сводится к уже решенной. Для того чтобы обеспечить присутствие заданных r типов, возьмем с самого начала по одному элементу каждого такого типа. Тем самым в k-сочетании окажутся заняты r мест. Поэтому ответом на задачу будет число . В частности, если требуется, чтобы в каждом сочетании был элемент каждого из типов (n≤k), то получится .

Задача.

Сколько существует различных бросаний двух одинаковых кубиков?

Решение.

Переформулируем задачу. Всего при подбрасывании одного кубика возможны шесть ситуаций – имеем предметы шести различных типов. Подбрасывают два кубика, следовательно, из данных шести типов предметов необходимо выбрать два, причем нас не интересует порядок выбора, и допускается выбор одинаковых предметов. Таким образом, это задача на сочетания с повторением. По формуле для вычисления количества сочетаний с повторением имеем различных бросаний двух одинаковых кубиков.

Многим комбинаторным задачам можно придать вид стандартной схемы. В этой схеме объекты (предметы) помещаются в ящики. Из-за наложения различных ограничений получаются различные задачи. Рассмотрим некоторые из них.

Имеется n1 предметов одного сорта, n2 – другого, . , nk – k-го сорта. Сколькими способами можно разложить их в два ящика?

Читайте также:  Что такое akamai netsession interface

Так как в каждый ящик может попасть от 0 до ni предметов i-го сорта (во второй все оставшиеся), по правилу произведения получаем (n1+1)∙(n2+1)∙. ∙(nk+1) способов раскладки.

Двое ребят собрали 10 ромашек, 15 васильков и 14 незабудок. Сколькими способами они могут разделить эти цветы?

Необходимо 10 предметов одного вида, 15 – второго и 14 – третьего разложить в два ящика. Применяя рассуждения, аналогичные приведенным выше, получаем 11×16×15=2460 способов раздела цветов.

Следствие 1. Если все предметы различны (n1=n2=. =nk=1), то их можно разложить 2 k способами.

Следствие 2. Если в каждый ящик нужно положить не менее si предметов i-го сорта, то получим формулу: (n1-2s1+1) × (n2-2s2+1) ×. × (nk-2sk+1).

Даны n различных предметов и k ящиков. Надо положить в первый ящик n1 предметов, во второй – n2, . в k-ый – nk, где n1+. +nk=n. Сколькими способами можно сделать такое распределение, если не интересует порядок предметов в ящике?

Выложим все предметы в один ряд. Это можно сделать n! способами. Первые n1 предметов положим в первый ящик, вторые n2 предмета – во второй ящик, …, k-ые nk предметов – в к-ый ящик. Так как нас не интересует порядок предметов в ящике, то любая перестановка первых n1 предметов не меняет результат раздела. Точно так же его не меняет любая перестановка вторых n2 предметов, . k-ых nk предметов. По правилу произведения получаем n1! ×n2!×. ×nk! перестановок, не меняющих результата раздела. Таким образом, n! перестановок делятся на группы по n1! ×n2!×. ×nk! перестановок в каждой группе, причем перестановки из одной группы приводят к одинаковому распределению предметов. Следовательно, число раздела предметов равно =P(n1. nk).

При игре в домино 4 игрока делят поровну 28 костей. Сколькими способами они могут это сделать?

Переформулируем задачу: необходимо разложить 28 предметов в 4 ящика по 7 предметов в каждый, причем порядок предметов в ящике не важен. Получаем способов распределения костей домино.

Можно было рассуждать другим способом. Первый игрок выбирает себе 7 костей из 28, это можно сделать способами. Второму необходимо выбрать 7 костей из оставшихся 21, это можно сделать способами. Третьему 7 из 14 – способов. А четвертый заберет оставшиеся. По правилу произведения получаем .

Даны n различных предметов и k одинаковых ящика. Надо положить в каждый ящик n1 предметов, где n1= . Сколькими способами можно сделать такое распределение, если не интересует порядок предметов в ящике, и все ящики одинаковы?

Задача отличается от предыдущей только тем, что ящики не пронумерованы. Так как k ящиков можно переставить k! способами, то полученный в предыдущей задаче результат необходимо разделить на k!. Всего способов распределения.

Сколькими различными способами можно разделить 8 книг на 4 бандероли по 2 книги в каждой?

Если бы интересовал порядок бандеролей, то существовало бы способов распределения книг. Так как не важно, в каком порядке будут отправлены бандероли, то полученное число необходимо поделить на 4!. Итого способов разделить 8 книг на 4 бандероли по 2 книги.

Сколькими способами можно разложить n одинаковых предметов в k ящиков?

Выложим все предметы в один ряд, добавим к ним k–1 одинаковых разделяющих предмета. Переставим всеми возможными способами n данных одинаковых предметов и k–1 разделяющих. Каждая такая перестановка определяет один из способов распределения. А именно предметы, расположенные до первого разделителя, положим в первый ящик, предметы, расположенные между первым и вторым разделителем, – во второй ящик и так далее, предметы расположенный после k–1 разделителя, – в k ящик. По формуле перестановок с повторениями число таких перестановок равно P(n, k-1)= . Значит, всего имеем способов разложить n одинаковых предметов в k ящиков.

Трое ребят собрали с яблони 40 яблок. Сколькими способами они могут их разделить, если все яблоки считаются одинаковыми (то есть нас интересует, сколько яблок получит каждый, а не какие именно)?

Добавим два разделяющих предмета, тогда получаем Р(40, 2)=780 способа разделить яблоки.

Следствие 1. Если в каждый ящик надо положить не менее r предметов, то получим: P(n-k×r,k-1) способов.

Следствие 2. Если в каждый ящик надо положить хотя бы один предмет, то r=1 и получим P(n-k,k-1)= способов распределения.

Сколько существует способов разложить n различных предметов в k ящиков, если нет никаких ограничений?

Каждый предмет можно положить в любой из k ящиков. Получаем k n способов распределения предметов по ящикам.

Сколькими способами можно разделить 8 различных пирожных между 5 детьми?

Необходимо разложить 8 предметов по 5 ящикам. Это можно сделать 5 8 =390 625 способами.

Сколькими способами можно поместить n различных предметов в k ящиков, если не должно быть пустых ящиков?

Читайте также:  Где найти картинки с заставки виндовс 10

Данные r ящиков остаются пустыми, если в k–r ящиков предметы кладутся без ограничений. r пустых ящиков можно выбрать Cn k способами. В оставшиеся k–r ящиков предметы можно разложить (k–r) n способами. По формуле включений и исключений число распределений, при которых хотя бы один ящик остается пустым, равно . Тогда количество распределений, при которых ни один ящик не окажется пустым, равно

k n -( ).

Сколькими способами можно послать по почте 8 различных фотографий, использовав 5 конвертов?

Переформулируем задачу: необходимо 8 предметов разложить в 5 ящиков. Посылать пустые конверты не рационально, поэтому накладывается запрет на пустые ящики.

Применяя полученную выше формулу, получаем

5 8 — ×4 8 + ×3 8 — ×2 8 + ×1 8 =126 020.

Имеется n1 предметов одного сорта, n2 – другого, . , ns – s-го сорта. Сколькими способами их можно разложить по k ящикам, если не должно быть пустых ящиков?

Применяя рассуждения, аналогичные предыдущей задаче, получим следующую формулу

.

Сколькими способами можно разделить 8 яблок, 10 груш и 7 апельсинов между 4 детьми, если каждый должен получить хотя бы один фрукт?

Требуется 8 предметов одного сорта, 10 второго и 7 третьего разложить в 4 ящика так, чтобы ни один ящик не оказался пустым. По предыдущей формуле получаем

способов такого распределения.

Сколькими способами можно распределить n различных предметов по k различным ящикам с учетом порядка расположения предметов в ящиках, причем все n предметов должны быть использованы?

Добавим к n предметам k–1 одинаковых разделяющих предмета. Рассмотрим все возможные перестановки из n различных предметов и k–1 одинаковых. Каждая такая перестановка определяет один из способов распределения. Всего таких перестановок . Значит, n различных предметов можно разложить в k ящиков, с учетом расположения их в ящиках, = способами.

К тому же результату можно было прийти и другим путем. Переставим всеми возможными способами данные n предметов (n! способов). Теперь считаем предметы неразличимыми, их можно разложить в k ящиков Р(n, k–1) способами. Получаем n!∙Р(n,k–1)= способов распределения этих вещей по к различным ящикам с учетом порядка их расположения в ящиках.

Имеются 6 различных сигнальных флагов и 3 мачты, на которые их вывешивают. Значение сигнала зависит от того, в каком порядке вывешены флаги. Сколькими способами можно развесить флаги, если все флаги должны быть использованы, но некоторые из мачт могут оказаться пустыми?

Имеем 6 предметов, которые необходимо разложить в 3 ящика, причем порядок предметов в ящике важен. Это можно сделать способами.

Следствие. Если не должно быть пустых ящиков, то выберем k предметов и разложим по одному в каждый ящик. Это можно сделать способами. Оставшиеся n–k предметов разложим в k–1 ящик, причем теперь некоторые ящики могут оказаться пустыми. Это распределение можно осуществить способами. Всего имеем способов распределения.

Сколькими способами можно распределить n различных предметов по k различным ящикам с учетом порядка расположения предметов в ящиках, причем не все n предметов могут быть использованы и некоторые ящики могут оказаться пустыми?

Разобьем все возможные комбинации на классы. В s класс войдут комбинации, в которых использованы ровно s предметов. Из предыдущей задачи известно, что s предметов можно разложить по k ящикам способами. s предметов из данных n можно выбрать способами. Всего в s класс войдут × комбинаций. По правилу суммы имеем

способов распределения n различных предметов по k различным ящикам с учетом порядка их расположения в ящиках, если не все n предметов могут быть использованы.

Имеются 6 различных сигнальных флагов и 3 мачты, на которые их вывешивают. Значение сигнала зависит от того, в каком порядке вывешены флаги. Сколькими способами можно развесить флаги, если не все флаги могут быть использованы и некоторые из мачт могут оказаться пустыми?

Имеем 6 различных предметов, которые необходимо разложить в 3 ящика, причем порядок предметов в ящике важен и не все ящики и предметы могут быть использованы. По формуле получаем

Следствие. Если не должно быть пустых ящиков, то в этом случае имеем

способов распределения.

Частотой появления события в серии испытанийназывается отношение числа наступления этого события в данной последовательности испытаний к общему числу испытаний.

Вероятностью случайного события называется отношение числа равновозможных элементарных событий, благоприятствующих этому событию, к числу всех равновозможных элементарных событий.

Равновозможными элементарными событиями будем считать такие события, любое из которых по отношению к другим событиям не обладает никаким преимуществом появляться чаще другого при многократных испытаниях, проводимых в одинаковых условиях.

Например, при бросании игральной кости возможны шесть различных результатов; из них лишь в одном случае выпадает шестёрка. Поэтому вероятность выпадения шестёрки равна 1/6.

Задача.

Дата добавления: 2015-01-03 ; Просмотров: 1441 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Ссылка на основную публикацию
Скайп не приходят сообщения
Общение – основная цель любого мессенджера, и Скайп – не исключение. Бывает, что сообщения в Скайпе не отправляются – эта...
Сборка пк без корпуса
Если серьезно, то компьютер без корпуса работать может и даже будет, но это достаточно опасно, особенно когда вы плохо понимаете...
Сборка пк на райзен 3 1200
Socket AM4, 4-ядерный, 3100 МГц, Turbo: 3400 МГц, Summit Ridge, Кэш L2 - 2048 Кб, Кэш L3 - 8192 Кб,...
Скайп предыдущие версии с официального сайта
На данной странице представлены все версии Скайп для компьютера (полноценные инсталляторы скаченные с официального сайта) и телефона, выпущенные за последние...
Adblock detector