Шина памяти оперативная память

Шина памяти оперативная память

Статьи по настройке и администрированию Windows/Linux систем

  • Полезное
  • Карта сайта
  • Мой сайт-визитка
  • Рубрики
    • Linux
      • VoIP
      • Безопасность
      • Видеопотоки
      • Системы виртуализации
      • Системы мониторинга
      • Windows
      • Интересное
      • Сеть и Интернет
      • Мета
        • Войти
        • RSS Feed
        • Новые поколения процессоров стимулировали разработку более скоростной памяти SDRAM (Synchronous Dynamic Random Access Memory) с тактовой частотой 66 МГц, а модули памяти с такими микросхемами получили название DIMM(Dual In-line Memory Module).
          Для использования с процессорами Athlon, а потом и с Pentium 4, было разработано второе поколение микросхем SDRAM — DDR SDRAM (Double Data Rate SDRAM). Технология DDR SDRAM позволяет передавать данные по обоим фронтам каждого тактового импульса, что предоставляет возможность удвоить пропускную способность памяти. При дальнейшем развитии этой технологии в микросхемах DDR2 SDRAM удалось за один тактовый импульс передавать уже 4 порции данных. Причем следует отметить, что увеличение производительности происходит за счет оптимизации процесса адресации и чтения/записи ячеек памяти, а вот тактовая частота работы запоминающей матрицы не изменяется. Поэтому общая производительность компьютера не увеличивается в два и четыре раза, а всего на десятки процентов. На рис. показаны частотные принципы работы микросхем SDRAM различных поколений.

          Существуют следующие типы DIMM:

            • 72-pin SO-DIMM (Small Outline Dual In-line Memory Module) — используется для FPM DRAM (Fast Page Mode Dynamic Random Access Memory) и EDO DRAM (Extended Data Out Dynamic Random Access Memory)

              • 100-pin DIMM — используется для принтеров SDRAM (Synchronous Dynamic Random Access Memory)

                • 144-pin SO-DIMM — используется для SDR SDRAM (Single Data Rate … ) в портативних компьютерах

                  • 168-pin DIMM — используется для SDR SDRAM (реже для FPM/EDO DRAM в рабочих станциях/серверах

                    • 172-pin MicroDIMM — используется для DDR SDRAM (Double date rate)

                      • 184-pin DIMM — используется для DDR SDRAM

                        • 200-pin SO-DIMM — используется для DDR SDRAM и DDR2 SDRAM


                          • 214-pin MicroDIMM — используется для DDR2 SDRAM

                            • 204-pin SO-DIMM — используется для DDR3 SDRAM

                              • 240-pin DIMM — используется для DDR2 SDRAM, DDR3 SDRAM и FB-DIMM (Fully Buffered) DRAM



                                • 244-pin Mini-DIMM – для Mini Registered DIMM

                                  • 256-pin SO-DIMM — используется для DDR4 SDRAM

                                    • 284-pin DIMM — используется для DDR4 SDRAM

                                    Чтобы нельзя было установить неподходящий тип DIMM-модуля, в текстолитовой плате модуля делается несколько прорезей (ключей) среди контактных площадок, а также справа и слева в зоне элементов фиксации модуля на системной плате. Для механической идентификации различных DIMM-модулей используется сдвиг положения двух ключей в текстолитовой плате модуля, расположенных среди контактных площадок. Основное назначение этих ключей — не дать установить в разъем DIMM-модуль с неподходящим напряжением питания микросхем памяти. Кроме того, расположение ключа или ключей определяет наличие или отсутствие буфера данных и т. д.

                                    Модули DDR имеют маркировку PC. Но в отличие от SDRAM, где PC обозначало частоту работы (например PC133 – память предназначена для работы на частоте 133МГц), показатель PC в модулях DDR указывает на максимально достижимую пропускную способностью, измеряемую в мегабайтах в секунду.

                                    DDR2 SDRAM

                                    Название стандарта Тип памяти Частота памяти Частота шины Передача данных в секунду (MT/s) Пиковая скорость передачи данных
                                    PC2-3200 DDR2-400 100 МГц 200 МГц 400 3200 МБ/с
                                    PC2-4200 DDR2-533 133 МГц 266 МГц 533 4200 МБ/с
                                    PC2-5300 DDR2-667 166 МГц 333 МГц 667 5300 МБ/с
                                    PC2-5400 DDR2-675 168 МГц 337 МГц 675 5400 МБ/с
                                    PC2-5600 DDR2-700 175 МГц 350 МГц 700 5600 МБ/с
                                    PC2-5700 DDR2-711 177 МГц 355 МГц 711 5700 МБ/с
                                    PC2-6000 DDR2-750 187 МГц 375 МГц 750 6000 МБ/с
                                    PC2-6400 DDR2-800 200 МГц 400 МГц 800 6400 МБ/с
                                    PC2-7100 DDR2-888 222 МГц 444 МГц 888 7100 МБ/с
                                    PC2-7200 DDR2-900 225 МГц 450 МГц 900 7200 МБ/с
                                    PC2-8000 DDR2-1000 250 МГц 500 МГц 1000 8000 МБ/с
                                    PC2-8500 DDR2-1066 266 МГц 533 МГц 1066 8500 МБ/с
                                    PC2-9200 DDR2-1150 287 МГц 575 МГц 1150 9200 МБ/с
                                    PC2-9600 DDR2-1200 300 МГц 600 МГц 1200 9600 МБ/с

                                    DDR3 SDRAM

                                    Название стандарта Тип памяти Частота памяти Частота шины Передач данных в секунду(MT/s) Пиковая скорость передачи данных
                                    PC3-6400 DDR3-800 100 МГц 400 МГц 800 6400 МБ/с
                                    PC3-8500 DDR3-1066 133 МГц 533 МГц 1066 8533 МБ/с
                                    PC3-10600 DDR3-1333 166 МГц 667 МГц 1333 10667 МБ/с
                                    PC3-12800 DDR3-1600 200 МГц 800 МГц 1600 12800 МБ/с
                                    PC3-14400 DDR3-1800 225 МГц 900 МГц 1800 14400 МБ/с
                                    PC3-16000 DDR3-2000 250 МГц 1000 МГц 2000 16000 МБ/с
                                    PC3-17000 DDR3-2133 266 МГц 1066 МГц 2133 17066 МБ/с
                                    PC3-19200 DDR3-2400 300 МГц 1200 МГц 2400 19200 МБ/с

                                    В таблицах указываются именно пиковые величины, на практике они могут быть недостижимы.
                                    Для комплексной оценки возможностей RAM используется термин пропускная способность памяти. Он учитывает и частоту, на которой передаются данные и разрядность шины и количество каналов памяти.

                                    Пропускная способность = Частота шины x ширину канала x кол-во каналов

                                    Для всех DDR — количество каналов = 2 и ширина равна 64 бита.
                                    Например, при использовании памяти DDR2-800 с частотой шины 400 МГц пропускная способность будет:

                                    (400 МГц x 64 бит x 2)/ 8 бит = 6400 Мбайт/с

                                    Каждый производитель каждому своему продукту или детали дает его внутреннюю производственную маркировку, называемую P/N (part number) — номер детали.
                                    Для модулей памяти у разных производителей она выглядит примерно так:

                                    • Kingston KVR800D2N6/1G
                                    • OCZ OCZ2M8001G
                                    • Corsair XMS2 CM2X1024-6400C5

                                    На сайте многих производителей памяти можно изучить, как читается их Part Number.

                                    Kingston Part Number Description
                                    KVR1333D3D4R9SK2/16G 16GB 1333MHz DDR3 ECC Reg CL9 DIMM (Kit of 2) DR x4 w/TS

                                    Так же советую почитать немного об USB портах и типах.

                                    DDR SDRAM (от англ. Double Data Rate Synchronous Dynamic Random Access Memory — синхронная динамическая память с произвольным доступом и удвоенной скоростью передачи данных) — тип компьютерной памяти, используемой в вычислительной технике в качестве оперативной и видеопамяти. Пришла на смену памяти типа SDRAM.

                                    Читайте также:  Как перевести ехел в пдф

                                    При использовании DDR SDRAM достигается удвоенная скорость работы, нежели в SDRAM, за счёт считывания команд и данных не только по фронту, как в SDRAM, но и по спаду тактового сигнала. За счёт этого удваивается скорость передачи данных без увеличения частоты тактового сигнала шины памяти. Таким образом, при работе DDR на частоте 100 МГц мы получим эффективную частоту 200 МГц (при сравнении с аналогом SDR SDRAM). В спецификации JEDEC [2] есть замечание, что использовать термин «МГц» в DDR некорректно, правильно указывать скорость «миллионов передач в секунду через один вывод данных».

                                    Специфическим режимом работы модулей памяти является двухканальный режим.

                                    Содержание

                                    Описание [ править | править код ]

                                    Микросхемы памяти DDR SDRAM выпускались в корпусах TSOP и (освоено позднее) корпусах типа BGA (FBGA), производятся по нормам 0,13 и 0,09-микронного техпроцесса:

                                    • Напряжение питания микросхем: 2,6 В ± 0,1 В.
                                    • Потребляемая мощность: 527 мВт.
                                    • Интерфейс ввода-вывода: SSTL_2.

                                    Ширина шины памяти составляет 64 бита, то есть по шине за один такт одновременно передаётся 8 байт. В результате получаем следующую формулу для расчёта максимальной скорости передачи для заданного типа памяти: (тактовая частота шины памяти) x 2 (передача данных дважды за такт) x 8 (число байтов передающихся за один такт). Например, чтобы обеспечить передачу данных дважды за такт, используется специальная архитектура «2n Prefetch». Внутренняя шина данных имеет ширину в два раза больше внешней. При передаче данных сначала передаётся первая половина шины данных по фронту тактового сигнала, а затем вторая половина шины данных по спаду.

                                    Помимо удвоенной передачи данных, DDR SDRAM имеет несколько других принципиальных отличий от простой памяти SDRAM. В основном, они являются технологическими. Например, был добавлен сигнал QDS, который располагается на печатной плате вместе с линиями данных. По нему происходит синхронизация при передаче данных. Если используется два модуля памяти, то данные от них приходят к контроллеру памяти с небольшой разницей из-за разного расстояния. Возникает проблема в выборе синхросигнала для их считывания, и использование QDS успешно это решает. Грубо говоря, если на материнской плате имеется 2 и более разъёмов для оперативной памяти, то ближний слот, будет ждать дальний слот.

                                    JEDEC устанавливает стандарты для скоростей DDR SDRAM, разделённых на две части: первая для чипов памяти, а вторая для модулей памяти, на которых, собственно, и размещаются чипы памяти.

                                    Чипы памяти [ править | править код ]

                                    В состав каждого модуля DDR SDRAM входит несколько идентичных чипов DDR SDRAM. Для модулей без коррекции ошибок (ECC) их количество кратно 4, для модулей с ECC — формула 4+1.

                                    Спецификация чипов памяти [ править | править код ]

                                    • DDR200: память типа DDR SDRAM, работающая на частоте 100 МГц
                                    • DDR266: память типа DDR SDRAM, работающая на частоте 133 МГц
                                    • DDR333: память типа DDR SDRAM, работающая на частоте 166 МГц
                                    • DDR400: память типа DDR SDRAM, работающая на частоте 200 МГц

                                    Характеристики чипов [ править | править код ]

                                    • Ёмкость чипа (DRAM density). Записывается в мегабитах, например, 256 Мбит — чип ёмкостью 32 мегабайта.
                                    • Организация (DRAM organization). Записывается в виде 64M x 4, где 64M — это количество элементарных ячеек хранения (64 миллиона), а x4 (произносится «by four») — разрядность чипа, то есть разрядность каждой ячейки. Чипы DDR бывают x4 и x8, последние стоят дешевле в пересчёте на мегабайт ёмкости, но не позволяют использовать функции Chipkill[en] , Memory scrubbing[en] и IntelSingle-device data correction[en] .

                                    Модули памяти [ править | править код ]

                                    Модули DDR SDRAM выполнены в форм-факторе DIMM. На каждом модуле расположено несколько одинаковых чипов памяти и конфигурационный чип Serial presence detect [en] . На модулях регистровой (registered) памяти также располагаются регистровые чипы, буферизующие и усиливающие сигнал на шине, на модулях нерегистровой (небуферизованной, unbuffered) памяти их нет.

                                    Характеристики модулей [ править | править код ]

                                    • Объём. Указывается в мегабайтах или гигабайтах.
                                    • Количество чипов (# of DRAM Devices). Кратно 8 для модулей без ECC, для модулей с ECC — кратно 9. Чипы могут располагаться на одной или обеих сторонах модуля. Максимальное умещающееся на DIMM количество — 36 (9×4).
                                    • Количество строк (рангов) (# of DRAM rows (ranks)).

                                    Чипы, как видно из их характеристики, имеют 4- или 8-битную шину данных. Чтобы обеспечить более широкую полосу (например, DIMM требует 64 бита и 72 бита для памяти с ECC), чипы связываются в ранги. Ранг памяти имеет общую шину адреса и дополняющие друг друга линии данных. На одном модуле может размещаться несколько рангов. Но если нужно больше памяти, то добавлять ранги можно и дальше, установкой нескольких модулей на одной плате и используя тот же принцип: все ранги сидят на одной шине, только Chip select [en] разные — у каждого свой. Большое количество рангов электрически нагружает шину, точнее контроллер и чипы памяти, и замедляет их работу. Отсюда начали применять многоканальную архитектуру, которая позволяет также независимо обращаться к нескольким модулям.

                                    • Задержки (тайминги): CAS Latency (CL), Clock Cycle Time (tCK), Row Cycle Time (tRC), Refresh Row Cycle Time (tRFC), Row Active Time (tRAS).

                                    Характеристики модулей и чипов, из которых они состоят, связаны.

                                    Объём модуля равен произведению объёма одного чипа на число чипов. При использовании ECC это число дополнительно умножается на коэффициент 8/9, так как на каждый байт приходится один бит избыточности для контроля ошибок. Таким образом, один и тот же объём модуля памяти можно набрать большим числом (36) маленьких чипов или малым числом (9) чипов большего объёма.

                                    Читайте также:  Что такое lumia denim

                                    Общая разрядность модуля равна произведению разрядности одного чипа на число чипов и равна произведению числа рангов на 64 (72) бита. Таким образом, увеличение числа чипов или использование чипов x8 вместо x4 ведёт к увеличению числа рангов модуля.

                                    Пример: Варианты модуля 1Гб PC2100 Registered DDR SDRAM

                                    Объём модуля Количество чипов Объём чипа Организация Количество строк (рангов)
                                    1 Гб 36 256 Мбит 64М x 4 2
                                    1 Гб 18 512 Мбит 64М x 8 2
                                    1 Гб 18 512 Мбит 128М x 4 1

                                    В данном примере сравниваются возможные компоновки модуля серверной памяти объёмом 1 Гб. Из представленных вариантов следует предпочесть первый или третий, так как они используют чипы x4, поддерживающие продвинутые методы исправления ошибок и защиты от сбоев. При необходимости использовать одноранговую память остаётся доступен только третий вариант, однако в зависимости от текущей стоимости чипов объёмом 256 Мбит и 512 Мбит он может оказаться дороже первого.

                                    Спецификация модулей памяти [ править | править код ]

                                    Название модуля Тип чипа Тактовая частота шины памяти, МГц Максимальная теоретическая пропускная способность, МБ/с
                                    одноканальный режим двухканальный режим
                                    PC1600* DDR200 100 1600 3200
                                    PC2100* DDR266 133 2133 4267
                                    PC2400 DDR300 150 2400 4800
                                    PC2700* DDR333 166 2667 5333
                                    PC3000 DDR366 183 3000 6000
                                    PC3200* DDR400 200 3200 6400
                                    PC3500 DDR433 217 3467 6933
                                    PC3700 DDR466 233 3733 7467
                                    PC4000 DDR500 250 4000 8000
                                    PC4200 DDR533 267 4267 8533
                                    PC5600 DDR700 350 5600 11200

                                    Примечание 1: стандарты, помеченные символом «*», официально сертифицированы JEDEC. Остальные типы памяти не сертифицированы JEDEC, хотя их и выпускали многие производители памяти, а большинство выпускавшихся в последнее время материнских плат поддерживали данные типы памяти.

                                    Примечание 2: выпускались модули памяти, работающие и на более высоких частотах (до 350 МГц, DDR700), но эти модули не пользовались большим спросом и выпускались в малом объёме, кроме того, они имели высокую цену [3] .

                                    Размеры модулей также стандартизированы JEDEC.

                                    Надо заметить, что нет никакой разницы в архитектуре DDR SDRAM с различными частотами, например, между PC1600 (работает на частоте 100 МГц) и PC2100 (работает на частоте 133 МГц). Просто стандарт говорит о том, на какой гарантированной частоте работает данный модуль.

                                    Модули памяти DDR SDRAM можно отличить от обычной SDRAM по числу выводов (184 вывода у модулей DDR против 168 выводов у модулей с обычной SDRAM) и по ключу (вырезы в области контактных площадок) — у SDRAM два, у DDR — один. Согласно JEDEC, модули DDR400 работают при напряжении питания 2,6 В, а все более медленные — при напряжении 2,5 В. Некоторые скоростные модули для достижения высоких частот работают при больших напряжениях, до 2,9 В.

                                    Большинство последних чипсетов с поддержкой DDR позволяли использовать модули DDR SDRAM в двухканальном, а некоторые чипсеты и в четырёхканальном режиме. Данный метод позволяет увеличить в 2 или 4 раза соответственно теоретическую пропускную способность шины памяти. Для работы памяти в двухканальном режиме требуются 2 (или 4) модуля памяти. Рекомендуется использовать модули, работающие на одной частоте, имеющие одинаковый объём и временны́е задержки (латентность, тайминги). Ещё лучше использовать абсолютно одинаковые модули.

                                    Сейчас модули DDR практически вытеснены модулями типов DDR2 и DDR3, которые в результате некоторых изменений в архитектуре позволяют получить бо́льшую пропускную способность подсистемы памяти. Ранее главным конкурентом DDR SDRAM являлась память типа RDRAM (Rambus), однако ввиду наличия некоторых недостатков со временем была практически вытеснена с рынка.

                                    Скорость и производительность памяти, как показатель, немного сложна в понимании. Это потому, что существуют разные способы обозначения скорости памяти и процессоров.

                                    Скорость и производительность памяти

                                    Скорость памяти первоначально обозначалась в наносекундах (ns). Но скорость новых форм памяти обычно определяется в мегагерцах (МГц) и мегабайтах в секунду (Мбит/с). Первоначально, скорость процессора обозначалась в мегагерцах (МГц). Но большинство скоростей текущих процессоров определяются в гигагерцах (ГГц). Хотя эти разные единицы скорости могут запутать, их относительно просто перевести из одного в другой.

                                    Наносекунда определяется одной миллиардной секунды. Чтобы понять насколько это малая величина, представьте, что скорость света в вакууме — 299 792 километра в секунду. За одну миллиардную часть секунды (одна наносекунда) луч света перемещается всего на 29,98 сантиметра.

                                    Скорость памяти часто определяется временем её цикла (сколько времени требуется для одного цикла). Тогда как скорость процессора почти всегда определяется скоростью цикла (количество циклов в секунду). Время цикла и скорость цикла — просто разные способы сказать одно и то же. То есть, вы можете указывать скорость чипа в циклах в секунду или секунды за цикл, что одно и то же.

                                    В качестве аналогии, используя те же относительные условия, возьмём скорость транспортного средства. Например, скорость автомобиля в Европе обычно выражается в километрах в час. Если вы едете со скоростью 60 километров в час (kph), это значит 1 минута на километр (mpk). На более высокой скорости 120 километров/ч — 0.5mpk, а на меньшей скорости 30 километров/ч это займёт 2.0mpk. Другими словами, вы могли бы обозначить скорость как значение kph или mpk, и они означали бы одно и то же.

                                    Так как различные условия оценки скорости чипа сбивают с толку, было бы интересно посмотреть, как именно они соотносятся. В таблице ниже показана зависимость между часто используемыми тактовыми частотами (МГц) и временем представляемого наносекундного (ns) цикла.

                                    Зависимость между мегагерцами (МГц) и временем цикла в наносекундах (ns)

                                    Тактовая частота Время цикла Тактовая частота Время цикла Тактовая частота Время цикла
                                    250MHz 4.0ns 850MHz 1.18ns 2.700MHz 0.37ns
                                    266MHz 3.8ns 866MHz 1.15ns 2.800MHz 0.36ns
                                    300MHz 3.3ns 900MHz 1.11ns 2.900MHz 0.34ns
                                    333MHz 3.0ns 933MHz 1.07ns 3.000MHz 0.333ns
                                    350MHz 2.9ns 950MHz 1.05ns 3.100MHz 0.323ns
                                    366MHz 2.7ns 966MHz 1.04ns 3.200MHz 0.313ns
                                    400MHz 2.5ns 1.000MHz 1.00ns 3.300MHz 0.303ns
                                    433MHz 2.3ns 1.100MHz 0.91ns 3.400MHz 0.294ns
                                    450MHz 2.2ns 1.133MHz 0.88ns 3.500MHz 0.286ns
                                    466MHz 2.1ns 1.200MHz 0.83ns 3.600MHz 0.278ns
                                    500MHz 2.0ns 1.300MHz 0.77ns 3.700MHz 0.270ns
                                    533MHz 1.88ns 1.400MHz 0.71ns 3.800MHz 0.263ns
                                    550MHz 1.82ns 1.500MHz 0.67ns 3.900MHz 0.256ns
                                    566MHz 1.77ns 1.600MHz 0.63ns 4.000MHz 0.250ns
                                    600MHz 1.67ns 1.700MHz 0.59ns 4.100MHz 0.244ns
                                    633MHz 1.58ns 1.800MHz 0.56ns 4.200MHz 0.238ns
                                    650MHz 1.54ns 1.900MHz 0.53ns 4.300MHz 0.233ns
                                    666MHz 1.50ns 2.000MHz 0.50ns 4.400MHz 0.227ns
                                    700MHz 1.43ns 2.100MHz 0.48ns 4.500MHz 0.222ns
                                    733MHz 1.36ns 2.200MHz 0.45ns 4.600MHz 0.217ns
                                    750MHz 1.33ns 2.300MHz 0.43ns 4.700MHz 0.213ns
                                    766MHz 1.31ns 2.400MHz 0.42ns 4.800MHz 0.208ns
                                    800MHz 1.25ns 2.500MHz 0.40ns 4.900MHz 0.204ns
                                    833MHz 1.20ns 2.600MHz 0.38ns 5.000MHz 0.200ns
                                    Читайте также:  Как перевести amr в mp3

                                    Как видно из таблицы, по мере увеличения тактовой частоты время цикла пропорционально уменьшается, и наоборот.

                                    В течение эволюции ПК, основная память (то, что мы называем оперативной памятью) с трудом выдерживала скорости процессора, требуя для перехвата запросов процессора из более медленной основной памяти, нескольких уровней высокоскоростной кэш-памяти. Однако, в последнее время, использующие DDR2, DDR3 и DDR4 SDRAM системы, имеют скорость передачи данных (пропускную способность) шины памяти, которая может быть равна пропускной способности внешней процессорной шины. Когда скорость шины памяти равна скорости процессорной шины (или даже несколько больше), производительность основной памяти наиболее близка к оптимальной для этой системы.

                                    Например, используя информацию в таблице, вы можете увидеть, что 60-разрядная память DRAM, используемая на оригинальных ПК Pentium и Pentium II до 1998 года, работает очень медленно 16,7 МГц. Эта медленная 16,7 — мегагерцовая память была установлена в системах, работающих на процессорах до 300 МГц или выше, с частотой шины до 66 МГц. Это привело к большому несоответствию между процессорной шиной и основной памятью. Чтобы уменьшить этот разрыв в производительности, начиная с 1998 года, отрасль переключилась на более быструю память SDRAM. Эта память может соответствовать скоростям процессорной шины частотой 66 МГц и 100 МГц. С этого момента, производительность памяти и особенно производительность шины памяти, в значительной степени сбалансировались с процессорной шиной. Что выйдя на новые и более быстрые типы, соответствует увеличению скорости шины процессора.

                                    Память и производительность

                                    К 2000 году доминирующая процессорная шина и скорость памяти увеличились до 100 МГц и даже 133 МГц, соответственно, PC100 и PC133 SDRAM. С начала 2001 года, стала популярной память SDRAM с двойной скоростью передачи данных (DDR) с частотой 200 МГц и 266 МГц.

                                    В 2002 году DDR память увеличилась до 333 МГц, а в 2003 году — до 400 МГц. В 2004 году ввели DDR2, сначала на частоте 400 МГц, а затем — 533 МГц. Память DDR2 соответствовала увеличению скорости шины процессора ПК с 2005 по 2006 год, в это время 667 МГц и 800 МГц. К 2007 году у памяти DDR2 была скорость до 1066 МГц.

                                    К концу 2007 года на рынок пришла DDR3, с частотой в 1066 МГц, 1333 МГц и в 2008 году — 1600 МГц. В 2009 году, DDR3 стала самым популярным типом памяти в новых системах, и были добавлены более быстрые скорости 1866 МГц и 2133 МГц.

                                    В 2013 была выпущена DDR4, с частотой 1600 МГц и ожидаемой в будущем скоростью до 3200 МГц. Системы на базе DDR4, начали выходить на рынок в конце лета 2014. В таблице ниже перечислены основные типы и уровни производительности памяти ПК.

                                    Типы памяти и уровни производительности

                                    Тип памяти Годы популярности Тип настольного модуля Тип модуля ноутбука Напряжение Max. Тактовая частота Max. Пропускная способность — Один канал Max. Пропускная способность. Два канала Max. Пропускная способность. Три канала.
                                    Fast Page Mode (FPM) DRAM 1987–1995 30/72-pin SIMM 72/144-pin SODIMM 5V 22MHz 177MBps N/A N/A
                                    Extended Data Out (EDO) DRAM 1995–1998 72-pin SIMM 72/144-pin SODIMM 5V 33MHz 266MBps N/A N/A
                                    Single Data Rate (SDR) SDRAM 1998–2002 168-pin DIMM 144-pin SODIMM 3.3V 133MHz 1,066MBps N/A N/A
                                    Double Data Rate (DDR) SDRAM 2002–2005 184-pin DIMM 200-pin SODIMM 2.5V 400MTps 3,200MBps 6,400MBps N/A
                                    DDR2 SDRAM 2005–2009 240-pin DDR2 DIMM 200-pin SODIMM 1.8V 1,066MTps 8,533MBps 17,066MBps N/A
                                    DDR3 SDRAM 2009–2015 240-pin DDR3 DIMM 204-pin SODIMM 1.5V 2,133MTps 17,066MBps 34,133MBps 51,200MBps
                                    DDR4 SDRAM 2015+ 284-pin DDR4 DIMM 256-pin SODIMM 1.2V 4,266MTps 34,133MBps 68,266MBps 102,400MBps

                                    МГц = миллион циклов в секунду
                                    MTps = миллионов переводов в секунду
                                    Мбит/с = миллион байт в секунду
                                    DIMM = двойной встроенный модуль памяти
                                    SODIMM = Малый DIMM
                                    SIMM = один встроенный модуль памяти

                                    Другая, связанная со скоростью, спецификация для рассмотрения — латентность CAS (column address strobe), которую часто сокращают до CL. Её также иногда называют латентностью чтения, и это число тактовых циклов, происходящих между регистрацией сигнала CAS и результирующими выходными данными, с более низким числом циклов, указывающим более быструю (лучшую) производительность.

                                    Если возможно, выбирайте модули с более низким значением CL, потому что чипсет материнской платы считывает эту спецификацию из SPD (последовательного обнаружения присутствия) ПЗУ на модуле и посредством улучшенных таймингов контроллера памяти, использует более низкую задержку.

                                    На рисунке показаны тайминг памяти и информация SPD, о которой сообщает CPU-Z ( www.cpuid.com ) для системы с DDR3-1600 SDRAM.

                                    Скриншоты CPU-Z, отображающие информацию о памяти / SPD для системы с DDR3-1600 SDRAM.

                                    Ссылка на основную публикацию
                                    Что такое удар в физике
                                    При ударе выполняется закон сохранения импульса и закон сохранения момента импульса, но обычно не выполняется закон сохранения механической энергии. Предполагается,...
                                    Что означает охват в статистике вконтакте
                                    Что такое охват подписчиков во Вконтакте Как посмотреть охват? Для сообщества Перейдите в сообщество, на панели управления нажмите кнопку «Статистика»,...
                                    Что означает ошибка esp
                                    Однажды ни с того ни с сего во время достаточно спокойной езды загорелась ошибка: "Сервис: ESP", затем следом появилось сообщение...
                                    Что такое узел хост
                                    Хост (от англ. host — «хозяин, принимающий гостей») — любое устройство , предоставляющее сервисы формата «клиент-сервер» в режиме сервера по...
                                    Adblock detector