Сетевые технологии высокоскоростной передачи данных

Сетевые технологии высокоскоростной передачи данных

В компактной форме изложены вопросы построения инфокоммуникационных сетей, обеспечивающих высокоскоростную передачу данных. Представлены разделы, которые необходимы для понимания того как можно обеспечить передачу не только с высокой скоростью, но и с другими показателями, характеризующими качество предоставляемой услуги. Приведено описание протоколов различных уровней эталонной модели взаимодействия открытых систем, технологий транспортных сетей. Рассмотрены вопросы передачи данных в беспроводных сетях связи и современные подходы, обеспечивающие передачу больших массивов информации за приемлемые отрезки времени. Уделено внимание набирающей все большую популярность технологии программно-конфигурируемых сетей.
Для студентов, обучающихся по направлению подготовки бакалавров «Инфокоммуникационные технологии и системы связи (степени) «бакалавр» и «магистр». Книга может быть использована для повышения квалификации работниками электросвязи.

Список литературы к введению

Глава 1. Основные понятия и определения
1.1. Информация, сообщение, сигнал
1.2. Скорость передачи информации
1.3. Физическая среда передачи данных
1.4. Методы преобразования сигналов
1.5. Методы множественного доступа к среде
1.6. Сети электросвязи
1.7. Организация работ по стандартизации в области передачи данных
1.8. Эталонная модель взаимодействия открытых систем
1.9. Контрольные вопросы
1.10. Список литературы

Глава 2. Обеспечение показателей качества обслуживания
2.1. Качество обслуживания. Общие положения
2.2. Обеспечение верности передачи данных
2.3. Обеспечение показателей структурной надежности
2.4. QoS маршрутизация
2.5. Контрольные вопросы
2.6. Список литературы

Глава 3. Локальные сети
3.1. Протоколы LAN
3.1.1. Технология Ethernet (IEEE 802.3)
3.1.2. Технология Token Ring (IEEE 802.5)
3.1.3. Технология FDDI
3.1.4. Fast Ethernet (IEEE 802.3u)
3.1.5. Технология 100VG-AnyLAN
3.1.6. Высокоскоростная технология Gigabit Ethernet
3.2. Технические средства, обеспечивающие функционирование высокоскоростных сетей передачи данных
3.2.1. Концентраторы
3.2.2. Мосты
3.2.3. Коммутаторы
3.2.4. Протокол STP
3.2.5. Маршрутизаторы
3.2.6. Шлюзы
3.2.7. Виртуальные локальные сети (Virtual local area Network, VLAN)
3.3. Контрольные вопросы
3.4. Список литературы

Глава 4. Протоколы канального уровня
4.1. Основные задачи канального уровня, функции протоколов 137
4.2. Байт-ориентированные протоколы
4.3. Бит-ориентированные протоколы
4.3.1. Протокол канального уровня HDLC (High-Level Data Link Control)
4.3.2. Протокол кадра SLIP (Serial Line Internet Protocol). 151
4.3.3. Протокол PPP (Point-to-Point Protocol — протокол двухточечной связи)
4.4. Контрольные вопросы
4.5. Список литературы

Глава 5. Протоколы сетевого и транспортного уровня
5.1. IP-протокол
5.2. Протокол IPv6
5.3. Протокол маршрутизации RIP
5.4. Внутренний протокол маршрутизации OSPF
5.5. Протокол BGP-4
5.6. Протокол резервирования ресурсов — RSVP
5.7. Протокол передачи RTP (Real-Time Transport Protocol)
5.8. Протокол DHCP (Dynamic Host Configuration Protocol)
5.9. Протокол LDAP
5.10. Протоколы ARP, RARP
5.11. Протокол TCP (Transmission Control Protocol)
5.12. Протокол UDP (User Datagram Protocol)
5.13. Контрольные вопросы
5.14. Список литературы

Глава 6. Транспортные IP-сети
6.1. Технология ATM
6.2. Синхронная цифровая иерархия (SDH)
6.3. Многопротокольная коммутация по меткам
6.4. Оптическая транспортная иерархия
6.5. Модель и иерархия Ethernet для транспортных сетей
6.6. Контрольные вопросы
6.7. Список литературы

Глава 7. Беспроводные технологии высокоскоростной передачи данных
7.1. Технология Wi-Fi (Wireless Fidelity)
7.2. Технология WiMAX (Worldwide Interoperability for Microwave Access)
7.3. Переход от WiMAX к технологии LTE (LongTermEvolution)
7.4. Состояние и перспективы высокоскоростных беспроводных сетей
7.5. Контрольные вопросы
7.6. Список литературы

Глава 8. Вместо заключения: некоторые соображения на тему «что надо сделать, чтобы обеспечить передачу данных с высокой скоростью в IP-сетях»
8.1. Традиционная передача данных с гарантированной доставкой. Проблемы
8.2. Альтернативные протоколы передачи данных с гарантированной доставкой
8.3. Алгоритм контроля перегрузок
8.4. Условия обеспечения передачи данных с высокой скоростью
8.5. Неявные проблемы обеспечения высокоскоростной передачи данных
8.6. Список литературы

Приложение 1. Программно-конфигурируемые сети
П.1. Общие положения.
П.2. Протокол OpenFlow и OpenFlow-коммутатор
П.3. Виртуализация сетей NFV
П.4. Стандартизация ПКС
П.5. SDN в России
П.6. Список литературы

Будылдина, Н. В. Сетевые технологии высокоскоростной передачи данных: Учебное пособие для вузов / Будылдина Н.В., Шувалов В.П. — Москва :Гор. линия-Телеком, 2016. — 342 с. (Специальность) ISBN 978-5-9912-0536-8. — Текст : электронный. — URL: https://znanium.com/catalog/product/702719

В компактной форме изложены вопросы построения инфокоммуникационных сетей, обеспечивающих высокоскоростную передачу данных. Представлены разделы, которые необходимы для понимания того как можно обеспечить передачу не только с высокой скоростью, но и с другими показателями, характеризующими качество предоставляемой услуги. Приведено описание протоколов различных уровней эталонной модели взаимодействия открытых систем, технологий транспортных сетей. Рассмотрены вопросы передачи данных в беспроводных сетях связи и современные подходы, обеспечивающие передачу больших массивов информации за приемлемые отрезки времени. Уделено внимание набирающей все большую популярность технологии программно-конфигурируемых сетей. Для студентов, обучающихся по направлению подготовки бакалавров "Инфокоммуникационные технологии и системы связи (степени) "бакалавр" и "магистр". Книга может быть использована для повышения квалификации работниками электросвязи.

Правила построения многосегментных сетей Fast Ethernet. Структурная и функциональная организация Token Ring. FDDI – оптоволоконный интерфейс распределенных данных. Беспроводные ЛВС (БЛВС). Ортогональное частотное мультиплексирование. Глобальные сети.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курс лекций
Язык русский
Дата добавления 05.09.2012
Размер файла 132,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Л14: Высокоскоростные технологии Ethernet

Fast Ethernet была предложена фирмой 3Com для реализации сети со скоростью передачи 100 Мбитс при сохранении всех особенностей 10-Мбитного Ethernet. Для этого полностью сохранялся формат кадра и метод доступа. Это позволяет полностью сохранить программное обеспечение. Одним из требований было также применение кабельной системы на основе витой пары, которая к моменту появления Fast Ethernet заняла доминирующее положение.

Читайте также:  Насадки на телефон для фото

Fast Ethernet предусматривает использование следующих кабельных систем:

1) Многомодовая волоконно-оптическая линия связи

2) Витая пара категории 5

3) Витая пара категории 3

Структура сети: иерархическая древовидная, построена на концентраторах, так как коаксиальный кабель применять не предполагалось.

Диаметр сети Fast Ethernet составляет порядка 200 метров, что связано с уменьшением времени передачи кадра минимальной длины. Сеть может работать как в полудуплексном режиме, так и в дуплексном режиме.

Стандарт определяет три спецификации физического уровня:

1) Использование двух неэкранированных пар

2) Использование четырех неэкранированных пар

3) Использование двух оптических волокон

Эти технологии, не смотря на использование разных кабелей, имеют много общего с точки зрения функциональности. Отличие заключается в том, что спецификация TX обеспечивает автоматическое определение скорости передачи. Если определить скорость не удалось, считается, что линия работает на скорости 10 Мбит.

К моменту появления Fast Ethernet большинство пользователей применяли витую пару категории 3. Для того чтобы по такой кабельной системе пропустить сигнал со скоростью 100 Мбитс была использована специальная система логического кодирования. В этом случае удается для передачи данных применять только 3 пары кабеля, а 4-ая пара используется для прослушивания и обнаружения коллизий. Это позволяет увеличить скорость обмена.

П3: Правила построения многосегментных сетей Fast Ethernet

Повторители Fast Ethernet делятся на 2 класса:

a. Поддерживает все виды логического кодирования

b. Поддерживает только один из видов логического кодирования, зато стоимость его гораздо ниже.

Поэтому в зависимости от конфигурации сети допускается использование одного или двух повторителей 2-го типа.

Это технология разработанная для передачи данных со скоростью 100 Мбитс с использование протоколов либо Ethernet, либо Token Ring. Для этого использован метод доступа с приоритетом и новая схема кодирования данных, которая получила название «квартетное кодирование». При этом данные передаются со скоростью 25Мбитс по 4-м витым парам, что в сумме обеспечивает 100 Мбитс.

Суть метода заключается в следующем: станция, имеющая кадр, для передачи посылает запрос концентратору, при этом требуется низкий приоритет для обычных данных и высокий приоритет для данных критичных к задержкам, то есть для мультимедийных данных. Концентратор обеспечивает разрешение на передачу соответствующего кадра, то есть работает на втором уровне OSI-модели (канальном уровне). Если сеть занята, концентратор ставит запрос в очередь.

Физическая топология такой сети обязательно звезда, при этом ветвление не допускается. Концентратор такой сети имеет 2 вида портов:

1) Порты для связи вниз (на нижний уровень иерархии)

2) Порты для связи вверх

Кроме концентраторов в такой сети могут исписываться коммутаторы, маршрутизаторы и сетевые адаптеры.

В такой сети могут использоваться кадры Ethernet, Token Ring, а также собственные кадры тестирования соединения.

Основные достоинства этой технологии:

1) Возможность использования существующей 10-Мбитной сети

2) Отсутствие потерь из-за конфликтов

3) Возможность построения протяженных сетей без использования коммутатора

Высокоскоростная технология гигабит Ethernet обеспечивает скорость до 1 гбсек, и он описан в рекомендациях 802.3z и 802.3ab. Особенности этой технологии:

1) Сохранены все виды кадров

2) Предусмотрено использование 2-ух протоколов доступа к среде передачи CSMA/CD и полнодуплексная система

В качестве физической среды передачи можно использовать:

1) Волоконно-оптический кабель

2) Витая пара категории 5

3) Коаксиальный кабель.

По сравнению с предыдущими версиями имеются изменения, как на физическом уровне, так и на уровне MAC:

1) Увеличен минимальный размер кадра с 64-ёх до 512-ти байт. Кадр дополняется до 51-ти байт специальным полем расширения размером от 448-ми до 0 байт.

2) Для уменьшения накладных расходов конечным узлам разрешено передавать несколько кадров подряд без освобождения среды передачи. Такой режим носит название Burst Mode. При этом станция может передать несколько кадров с общей длиной 65536 бит.

Гигабит Ethernet может быть реализован на витой паре категории 5, при этом используется 4 пары проводников. Каждая из пар проводников обеспечивает скорость передачи 250 Мбитсек

В4: 10-ти гигабитный Ethernet

Ряд фирм к 2002-му году разработали аппаратуру, обеспечивающую скорость передачи 10 Гбитсек. Это в первую очередь аппаратура фирмы Cisco. В связи с этим был разработан стандарт 802.3ae. Согласно этому стандарту в качестве линий передачи данных использовалась волоконно-оптическая линия. В 2006 году появился стандарт 802.3an, в котором применялась витая пара 6-ой категории. Технология 10-ти гигабитного Ethernet предназначена в 1-ую очередь для передачи данных на большие расстояния. Она использовалась для объединения локальных сетей. Позволяет строить сети диаметром в несколько 10-ов км. К основным особенностям 10-ти гигабитного Ethernet можно отнести:

1) Дуплексный режим на основе коммутаторов

2) Наличие 3-ёх групп стандартов физического уровня

3) Использование в качестве основной среды передачи данных волоконно-оптического кабеля

В5: 100 гигабитный Ethernet

В 2010 году был принят новый стандарт 802.3ba, в котором предусматривались скорости передачи 40 и 100 Гбитсек. Основная цель разработки этого стандарта состояла в распространении требований протокола 802.3 на новые сверхскоростные системы передачи данных. При этом стояла задача максимального сохранения инфраструктуры локальных вычислительных сетей. Необходимость в новом стандарте связана с ростом объемов данных передаваемых по сетям. Требования к объёмам существенно превышают существующие возможности. Данный стандарт поддерживает дуплексный режим и ориентирован на различные среды передачи данных.

Читайте также:  Приложение для хранения фото на iphone

Основными целями разработки нового стандарта было:

1) Сохранение формата кадра

2) Сохранение минимального и максимального размера кадра

3) Сохранение уровня ошибок в прежних рамках

4) Обеспечение поддержки высоконадёжной среды для передачи разнородных данных

5) Обеспечение спецификаций физического уровня при передаче по оптическому волокну

Основными пользователями систем, разработанных на основе этого стандарта, должны стать сети хранения данных, серверные фермы, центры обработки данных, телекоммуникационные компании. Для этих организаций коммуникационные системы передачи данных уже на сегодняшний день оказываются узким местом. Дальнейшей перспективой развития сетей Ethernet связывают с 1 Тбитсек сетями. Предполагается что технология, поддерживающая такие скорости, появится к 2015-ому году. Для этого необходимо преодолеть целый ряд трудностей, в частности разработать более высокочастотные лазеры с частотой модуляции, по крайней мере, 15 Ггц. Для этих сетей нужны также новые оптические кабеля и новые системы модуляции. В качестве наиболее перспективных сред передачи рассматриваются волоконно-оптические линии с вакуумной сердцевиной, а так же изготовленные из углерода, а не из кремния как современные линии. Естественно при таком массовом использовании волоконно-оптических линий необходимо больше внимания уделять оптическим методам обработки сигналов.

В1: Общие сведения

Token Ring — маркерное кольцо — сетевая технология, в которой станции могут передавать данные только тогда, когда они владеют маркером, непрерывно циркулирующем по сети. Эта технология предложена фирмой IBM и описана в стандарте 802.5.

Основные технические характеристики Token Ring:

1) Максимальное число станций в кольце 256

2) Максимальное расстояние между станциями 100 м. для витой пары категории 4, 3 км для оптоволоконного многомодового кабеля

3) С помощью мостов можно объединить до 8-ми колец.

Существует 2 варианта технологии Token Ring, обеспечивающие скорость передачи 4 и 16 Мбитсек.

1) Отсутствие конфликтов

2) Гарантированное время доступа

3) Хорошее функционирование при большой загрузке, в то время как Ethernet при загрузке 30% существенно снижает свои скорости

4) Большой размер передаваемых данных в кадре (до 18-ти Кбайт).

5) Реальная скорость 4-ёх мегабитной сети Token Ring оказывается выше, чем в 10-ти мегабитной Ethernet

К недостаткам можно отнести:

1) Более высокая стоимость оборудования

2) Пропускная способность сети Token Ring в настоящее время меньше чем в последних версиях Ethernet

В2: Структурная и функциональная организация Token Ring

Физическая топология Token Ring — звезда. Она реализуется за счёт подключения всех компьютеров через сетевые адаптеры к устройству множественного доступа. Оно осуществляет передачу кадров от узла к узлу, представляет собой концентратор. Он имеет 8 портов и 2 разъёма для подключения к другим концентраторам. В случае выхода из строя одного из сетевых адаптеров данное направление перемыкается и целостность кольца не нарушается. Несколько концентраторов могут конструктивно объединяться в кластер. Внутри этого кластера абоненты соединены в кольцо. Каждый узел сети принимает кадр от соседнего узла, восстанавливает уровень сигнала и передаёт следующему. Кадр может содержать данные либо маркер. Когда узлу необходимо передать кадр, адаптер дожидается поступления маркера. Получив его, он преобразует маркер в кадр данных и передаёт его по кольцу. Пакет совершает оборот по всему кольцу и поступает на сформировавший этот пакет узел. Здесь проверяется правильность прохождения кадра по кольцу. Количество кадров, которое может передать узел за 1 сеанс, определяется временем удержания маркера, которое обычно = 10 мсек. При получении маркера, узел определяет, есть ли у него данные для передачи, и превышает ли их приоритет значение зарезервированного приоритета записанного в маркере. Если превышает, то узел захватывает маркер и формирует кадр данных. В процессе передачи маркера и кадра данных, каждый узел проверяет кадр на наличие ошибок. При их обнаружении устанавливается специальный признак ошибки, и все узлы игнорируют этот кадр. В процессе прохождения маркера по кольцу узлы имеют возможность зарезервировать приоритет, с которым они хотят передать свой кадр. В процессе прохождения по кольцу к маркеру будет присоединён кадр, имеющий наивысший приоритет. Это гарантирует среду передачи от столкновения кадров. При передаче небольших кадров, например запросов на чтение файла, возникают непроизводительные задержки, необходимые для полного оборота этого запроса по всему кольцу. Для увеличения производительности в сети со скоростью 16 Мбитсек, используется режим ранней передачи маркера. При этом узел передаёт маркер следующему узлу сразу же после передачи своего кадра. Сразу после включения сети 1 из узлов назначается активным монитором, он выполняет дополнительные функции:

1) Контроль наличия маркера в сети

2) Формирование нового маркера при обнаружении потери

3) Формирование диагностических кадров

В3: форматы кадров

В сети Token Ring используется 3 типа кадров:

3) Последовательность завершения

Кадр данных представляет собой следующий набор байт:

НР — начальный разделитель. Размер 1 байт, указывает начало кадра. Он также отмечает тип кадра: промежуточный, последний или единственный.

УД — управление доступом. В это поле узлы, которым необходимо передать данные, могут записать необходимость резервирования канала.

УК — управление кадром. 1 байт. Указывает информацию для управления кольцом.

АН — адрес узла назначения. Может быть длиной 2 или 6 байт, в зависимости от настроек.

АИ — адрес источника. Также 2 или 6 байт.

Данные. Данное поле может содержать данные, предназначенные для протоколов сетевого уровня. Специального ограничения на длину поля, однако, его длина ограничивается исходя их допустимого времени удержания маркера (10 миллисекунд). За это время, обычно, можно передать от 5 до 20 килобайт информации, что является фактическим ограничением.

Читайте также:  Открыть фонбет через зеркало

КС — контрольная сумма, 4 байта.

КР — концевой разделитель. 1 байт.

СК — статус кадра. Может, например, содержать информацию о содержащийся в кадре ошибке.

Второй тип кадра — маркер:

Третий кадр — последовательность завершения:

Используется для завершения передачи в любой момент времени.

В1: Общие сведения

FDDI — оптоволоконный интерфейс распределенных данных.

Это одна из первых высокоскоростных технологий, используемая в сетях на волоконно-оптическом кабеле. Стандарт FDDI реализован с максимальным соответствием стандарту Token Ring.

Стандарт FDDI обеспечивает:

1) Высокую надежность

2) Гибкую реконфигурацию

3) Скорость передачи до 100 Мбитс

4) Большие расстояния между узлами, до 100 километров

1) Высокая помехозащищенность

2) Секретность передачи информации

3) Прекрасная гальваническая развязка

4) Возможность объединения большого количества пользователей

5) Гарантированное время доступа к сети

6) Отсутствие конфликтов даже при большой загрузке

1) Высокая стоимость оборудования

2) Сложность эксплуатации

В2: Структурная организация сети

Топология — двойное кольцо. Причем используется 2 разнонаправленных оптоволоконных кабеля:

В нормальном режиме работы для передачи данных используется основное кольцо. Второе кольцо — резервное, обеспечивает передачу данных в обратном направлении. Оно автоматически активизируется в случае повреждения кабеля, либо при выходе из строя рабочей станции

Соединение точка-точка между станциями упрощает стандартизацию и позволяет использовать на разных участках волокна разного типа.

Стандарт позволяет применение сетевых адаптеров 2 типов:

1) Адаптер типа А. Подключается сразу к 2-м линиям и может обеспечить скорость работы до 200 Мбитс

2) Адаптер типа Б. Подключается только к 1-му кольцу и поддерживает скорость до 100 Мбитс

Кроме рабочих станций в состав сети могут входит связные концентраторы. Они обеспечивают:

1) Контроль за работой сети

2) Диагностику неисправностей

3) Преобразование оптического сигнала в электрический и наоборот при необходимости подключения витой пары

Скорость обмена в таких сетях в частности возрастает за счет специального метода кодирования, разработанного специально для этого стандарта. В нем символы кодируется не с помощью байтов, а с помощью полубайтов, который получили название ниббл.

В3: Функциональная организация сети

За основу стандарта был взят метод маркерного доступа, используемый в Token Ring. Отличие метода доступа FDDI от Token Ring заключается в следующем:

1) В FDDI применяется множественная передача маркера, при которой новый маркер передается другой станции сразу же после окончания передачи кадр, не ожидая его возвращения

2) В FDDI не предусмотрена возможность установки приоритета и резервирования. Каждая станция рассматривается как асинхронная, время доступа к сети для нее не критично. Имеется также синхронные станции, с очень жестким ограничением на время доступа и на интервал между передачами данных. Для таких станций устанавливается сложный алгоритм доступа к сети, зато обеспечивается высокоскоростная и приоритетная передача кадров

В4: Форматы кадров

Форматы кадров несколько отличаются от сети Token Ring.

Формат кадра данных:

П. В состав кадра данных входит преамбула. Она служит для начальной синхронизации приема. Начальная длина преамбулы 8 байт (64 бита). Однако со временем, в ходе сеанса связи, размер преамбулы может уменьшаться

НР. Начальный разделитель.

УК. Управление кадром. 1 байт.

АН и АИ. Адрес назначения и источника. Размером 2 или 6 байт.

Поле данных по длине может быть произвольным, однако размер кадра не должен превышать 4500 байт.

КС. Контрольная сумма. 4 байт

КР. Концевой разделитель. 0,5 байта.

СК. Статус кадра. Поле произвольной длины, не более 8 бит (1 байта), указывающие результаты обработки кадра. Обнаружена ошибка данные скопированы и так далее.

Кадр маркера в этой сети имеет следующий состав:

Л17: Беспроводные ЛВС (БЛВС)

В1: Общие принципы

Возможны 2 способа организации таких сетей:

1) С базовой станцией. Через которую, осуществляется обмен данными между рабочими станциями

2) Без базовой станции. Когда обмен осуществляется на прямую

1) Простота дешевизна построения

2) Мобильность пользователей

1) Низкая помехоустойчивость

2) Неопределенность зоны покрытия

3) Проблема «скрытого терминала». Проблема «скрытого терминала» заключается в следующем: станция А передает сигнал станции Б. Станция С видит станцию Б и не видит станцию А. Станция С считает, что Б свободна и передает ей свои данные.

В2: Методы передачи данных

Основными методами передачи данных являются:

1) Ортогональное частотное мультиплексирование (OFDM)

2) Расширение спектра скачкообразным изменением частоты (FHSS)

3) Прямое последовательное расширение спектра (DSSS)

П1: Ортогональное частотное мультиплексирование

Применяется для передачи данных со скоростью до 54 Мбитс на частоте 5 ГГц. Битовый поток данных делится на N подпотоков, каждый из которых модулируется автономно. На основе быстрого преобразования Фурье все несущие сворачиваются в общий сигнал, спектр которого примерно равен спектру одного модулируемого подпотока. На приемном конце при помощи обратного преобразования Фурье восстанавливается исходный сигнал.

П2: Расширение спектра скачкообразным изменением частоты

Метод основан на постоянной смене частоты несущей в пределах заданного диапазона. В каждый из временных интервалов передается определенная порция данных. Этот метод обеспечивает более надежную передачу данных, но более сложен в реализации, чем первый метод.

П3: Прямое последовательное расширение спектра

Каждый единичный бит в передаваемых данных заменяется двоичной последовательностью. При этом скорость передачи данных возрастает, а значит и расширяется спектр передаваемых частот. Этот метод также обеспечивает повышение помехоустойчивости.

Это технология описывается стеком протоколов 802.11.

Существует несколько вариантов построения сети в соответствии с этим стеком.

Ссылка на основную публикацию
Сборка пк без корпуса
Если серьезно, то компьютер без корпуса работать может и даже будет, но это достаточно опасно, особенно когда вы плохо понимаете...
Ростелеком брянск личный кабинет вход
Наименование организации: ПАО «Ростелеком» Официальный сайт: rt.ru Вход в личный кабинет Ростелеком Вход в личный кабинет Ростелеком осуществляется по адресу:...
Ростелеком изменил лицевые счета
Когда вы решили стать абонентом компании Ростелеком, то с вами был заключен договор, в котором была указана информация, которая требуется...
Сборка пк на райзен 3 1200
Socket AM4, 4-ядерный, 3100 МГц, Turbo: 3400 МГц, Summit Ridge, Кэш L2 - 2048 Кб, Кэш L3 - 8192 Кб,...
Adblock detector