Решение системы квадратных уравнений

Решение системы квадратных уравнений

Нелинейные уравнения с двумя неизвестными
Системы из двух уравнений, одно из которых линейное
Однородные уравнения второй степени с двумя неизвестными
Системы из двух уравнений, одно из которых однородное
Системы из двух уравнений, сводящиеся к системам, в которых одно из уравнений однородное
Примеры решения систем уравнений других видов

Нелинейные уравнения с двумя неизвестными

Определение 1 . Пусть A – некоторое множество пар чисел (x ; y) . Говорят, что на множестве A задана числовая функция z от двух переменных x и y , если указано правило, с помощью которого каждой паре чисел из множества A ставится в соответствие некоторое число.

Задание числовой функции z от двух переменных x и y часто обозначают так:

z = f (x , y) , (1)

причем в записи (1) числа x и y называют аргументами функции , а число z – значением функции , соответствующим паре аргументов (x ; y) .

Определение 2 . Нелинейным уравнением с двумя неизвестными x и y называют уравнение вида

f (x , y) = 0 , (2)

где f (x , y) – любая функция, отличная от функции

где a , b , c – заданные числа.

Определение 3 . Решением уравнения (2) называют пару чисел (x ; y) , для которых формула (2) является верным равенством.

Пример 1 . Решить уравнение

x 2 – 4xy + 6y 2 –
– 12 y +18 = 0 .
(3)

Решение . Преобразуем левую часть уравнения (3):

Таким образом, уравнение (3) можно переписать в виде

(x – 2y) 2 + 2(y – 3) 2 = 0 . (4)

Поскольку квадрат любого числа неотрицателен, то из формулы (4) вытекает, что неизвестные x и y удовлетворяют системе уравнений

решением которой служит пара чисел (6 ; 3) .

Пример 2 . Решить уравнение

sin (xy) = 2 . (5)

вытекает, что уравнение (5) решений не имеет.

Ответ : Решений нет.

Пример 3 . Решить уравнение

ln (x – y) = 0 . (6)

Следовательно, решением уравнения (6) является бесконечное множество пар чисел вида

где y – любое число.

Системы из двух уравнений, одно из которых линейное

Определение 4 . Решением системы уравнений

называют пару чисел (x ; y) , при подстановке которых в каждое из уравнений этой системы получается верное равенство.

Системы из двух уравнений, одно из которых линейное, имеют вид

где a , b , c – заданные числа, а g(x , y) – функция двух переменных x и y .

Пример 4 . Решить систему уравнений

(7)

Решение . Выразим из первого уравнения системы (7) неизвестное y через неизвестное x и подставим полученное выражение во второе уравнение системы:

Таким образом, решениями системы (7) являются две пары чисел

и

Ответ : (– 1 ; 9) , (9 ; – 1)

Однородные уравнения второй степени с двумя неизвестными

Определение 5 . Однородным уравнением второй степени с двумя неизвестными x и y называют уравнение вида

где a , b , c – заданные числа.

Пример 5 . Решить уравнение

3x 2 – 8xy + 5y 2 = 0 . (8)

Решение . Для каждого значения y рассмотрим уравнение (8) как квадратное уравнение относительно неизвестного x . Тогда дискриминант D квадратного уравнения (8) будет выражаться по формуле

откуда с помощью формулы для корней квадратного уравнения найдем корни уравнения (8):

Ответ . Решениями уравнения (8) являются все пары чисел вида

( y ; y) или

где y – любое число.

Следствие . Левую часть уравнения (8) можно разложить на множители

Системы из двух уравнений, одно из которых однородное

Системы из двух уравнений, одно из которых однородное, имеют вид

Читайте также:  Как проверить количество ядер на ноутбуке

где a , b , c – заданные числа, а g(x , y) – функция двух переменных x и y .

Пример 6 . Решить систему уравнений

(9)

рассматривая его как квадратное уравнение относительно неизвестного x :

.

В случае, когда x = – y , из второго уравнения системы (9) получаем уравнение

корнями которого служат числа y1 = 2 , y2 = – 2 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (– 2 ; 2) , (2 ; – 2) .

,

из второго уравнения системы (9) получаем уравнение

которое корней не имеет.

Ответ : (– 2 ; 2) , (2 ; – 2)

Системы из двух уравнений, сводящиеся к системам, в которых одно из уравнений однородное

Пример 7 . Решить систему уравнений

(10)

Решение . Совершим над системой (10) следующие преобразования:

  • второе уравнение системы оставим без изменений;
  • к первому уравнению, умноженному на 5 , прибавим второе уравнение, умноженное на 3 , и запишем полученный результат вместо первого уравнения системы (10).

В результате система (10) преобразуется в равносильную ей систему (11), в которой первое уравнение является однородным уравнением:

(11)

рассматривая его как квадратное уравнение относительно неизвестного x :

.

В случае, когда x = – 5y , из второго уравнения системы (11) получаем уравнение

которое корней не имеет.

,

из второго уравнения системы (11) получаем уравнение

,

корнями которого служат числа y1 = 3 , y2 = – 3 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (– 2 ; 3) , (2 ; – 3) .

Ответ : (– 2 ; 3) , (2 ; – 3)

Примеры решения систем уравнений других видов

Пример 8 . Решить систему уравнений (МФТИ)

Решение . Введем новые неизвестные u и v , которые выражаются через x и y по формулам:

(13)

Для того, чтобы переписать систему (12) через новые неизвестные, выразим сначала неизвестные x и y через u и v . Из системы (13) следует, что

(14)

Решим линейную систему (14), исключив из второго уравнения этой системы переменную x . С этой целью совершим над системой (14) следующие преобразования:

  • первое уравнение системы оставим без изменений;
  • из второго уравнения вычтем первое уравнение и заменим второе уравнение системы на полученную разность.

В результате система (14) преобразуется в равносильную ей систему

из которой находим

(15)

Воспользовавшись формулами (13) и (15), перепишем исходную систему (12) в виде

(16)

У системы (16) первое уравнение – линейное, поэтому мы можем выразить из него неизвестное u через неизвестное v и подставить это выражение во второе уравнение системы:

Следовательно, решениями системы (16) являются две пары чисел

Из формул (13) вытекает, что , поэтому первое решение должно быть отброшено. В случае u2 = 5, v2 = 2 из формул (15) находим значения x и y :

Определение 6 . Решением системы из двух уравнений с тремя неизвестными называют тройку чисел (x ; y ; z) , при подстановке которых в каждое уравнение системы получается верное равенство.

Пример 9 . Решить систему из двух уравнений с тремя неизвестными

(17)

Решение . У системы (17) первое уравнение – линейное, поэтому мы можем выразить из него неизвестное z через неизвестные x и y и подставить это выражение во второе уравнение системы:

Читайте также:  Clear motion rate 200
(18)

Перепишем второе уравнение системы (18) в другом виде:

Поскольку квадрат любого числа неотрицателен, то выполнение последнего равенства возможно лишь в случае x = 4, y = 4 .

Ответ : (4 ; 4 ; – 4)

Замечание . Рекомендуем посетителю нашего сайта, интересующемуся методами решения систем уравнений, ознакомиться также c разделом справочника «Системы линейных уравнений» и нашим учебным пособием «Системы уравнений».

Разделы: Математика

Цели урока:

  1. Повторить ранее изученные различные способы решения уравнений, сводящихся к квадратным.
  2. Научить сотрудничеству учеников посредством работы в малых группах, а так же взаимопомощи в процессе обучения. 3. Развитие познавательного интереса, интереса к педагогической деятельности.

Форма проведения: Работа в малых группах, с участием консультантов.

ХОД УРОКА

I. Организация начала урока.

Деление на группы

II. Сообщение учащимся цели предстоящей работы. Мотивация учения.

III. Интеллектуальная разминка. (Приложение 1)

Разминка в форме тестовых заданий. Подготовка к ЕГЭ.

IV. Проверка индивидуального домашнего задания, направленного на повторение основных понятий, основополагающих знаний, умений, способов действий. У доски работают консультанты. На предыдущем уроке им было задано индивидуальное домашнее задание.

Системы нелинейных уравнений, сводящихся к квадратным. (Приложение 2)

Решить систему уравнений

Решение: Если вычесть второе уравнение из первого, получим Значит надо решить систему уравнений

откуда . Корнями этого квадратного уравнения служат . Если y1=3, то из находим х1=1. Если же .

Ответ:

Ответ:

Метод введения новых неизвестных при решении систем уравнений. (Приложение 3)

Решить систему уравнений

Решение. Обозначим через u, а через v. Тогда система примет вид

То есть получится система двух линейных уравнений с двумя неизвестными u и v. Из первого уравнения выражаем u через v: и подставляя во второе уравнение, получим , откуда v=2. Теперь находим u=1 и решаем уравнения

Ответ:

Ответ:

Решить систему уравнений

Решение. Заметим, что для решений системы выполняется условие . В самом деле, из первого уравнения системы следует, что если , а числа не удовлетворяют второму уравнению системы. Разделим первое уравнение на . Получится уравнение

Введем вспомогательное неизвестное . Уравнение примет вид . Это квадратное уравнение, имеющее корни . Таким образом, из первого уравнения мы получаем, что либо либо . Осталось подставить выражения и (рассмотрев оба случая) во второе уравнение системы. В первом случае получится уравнение , откуда ; соответственно . Во втором случае получается уравнение , откуда ; соответственно

Ответ:

Возможный способ оформления

разделим первое уравнение на , получим

Пусть , тогда

Ответ:

V. Работа в малых группах.

Решите систему уравнений

Решите систему уравнений

VI. Подведение итогов урока.

VII. Задание на дом.

Задание по группам. Группа консультантов выполняет № 624 (4, 6, 8).

КВАДРАТНЫЙ ТРЕХЧЛЕН III

§ 63. Решение некоторых систем уравнений

В этом параграфе мы рассмотрим некоторые типичные системы уравнений, решение которых сводится к решению квадратных уравнений.

Читайте также:  Видеокарта для slim desktop корпусов

Пример 1. Решить систему уравнений

Поскольку второе уравнение этой системы линейно относительно каждой из переменных х и у, то одна из этих переменных,; например у, легко выражается через другую:

Подставляя это выражение для у в первое уравнение системы, получаем:

Этим значениям х согласно второму уравнению системы соответствуют следующие значения у: y1 = 1 /3; y2 = 0.

Таким образом, данная система уравнений имеет два решения:

Пример 2. Решить систему уравнений

(1)

Характерная особенность этой системы уравнений состоит в том, что она содержит лишь выражения x 2 , y 2 и ху, суммарная степень х и у в которых постоянна и равна 2.

Для решения данной системы выполним следующие преобрaзования. Из первого уравнения системы (1) вычтем второе, умноженное на 2. В результате получим уравнение

правая часть которого равна 0.

Заметим, что х =/= 0. В противном случае из (2) вытекало бы, что у = 0, а это явно противоречит уравнениям системы (1). Но если х =/= 0, то уравнение (2) можно почленно разделить на x 2 , что дает

Рассмотрим эти два случая отдельно.

1) Если y /x = 1, то у = х. Замена у в первом уравнении данной системы на х приводит к следующему результату:

Отсюда получаем следующие два решения данной системы:

Следовательно, х = ±1. Отсюда, учитывая, что у = 2х, получаем еще два решения данной системы:

Проверка показывает, что ни одно из полученных четырех решений системы (1) не является "посторонним".

Ответ. Данная система уравнений имеет 4 решения:

Пример 3. Решить систему уравнений

Если только данная система уравнений имеет решение, то по теореме, обратной теореме Виета, это решение должно состоять из корней квадратного уравнения (см. § 52):

Это уравнение имеет корни x1= —1, x2 = +7. Следовательно, в роли решений данной системы уравнений могут выступать только следующие две пары чисел:

Элементарная проверка показывает, что каждая из этих пар чисел является решением нашей системы.

Ответ. Данная система уравнений имеет два решения:

Пример 4. Решить систему уравнений

Из второго уравнения следует, что х • (—у)= 7. Поэтому

Мы получили систему уравнений, вполне аналогичную системе, рассмотренной в примере 3. Только роль неизвестных играют не х и у, как в примере. 3, а х и — у. Поэтому дальнейший ход решения этой системы такой же, как в примере 3. Учащимся предлагается провести его самостоятельно.

Пример 5. Решить систему уравнений

Из второго уравнения получаем x 2 y 2 = 4. Но в таком случае по теореме, обратной теореме Виета, x 2 и y 2 можно рассматривать как корни квадратного уравнения

Случай 1. Если х = + 2, то у = —1 (согласно второму уравнению исходной системы ху = — 2 ). Если х =— 2, то у = 1.

Мы получили 4 решения данной системы уравнений:

Ссылка на основную публикацию
Регулятор громкости для автомагнитолы
Бывший хозяин видимо пытаясь снять магнитолу за рукоятку громкости, сломал её. В результате громкость не регулировалась, а отпаявшиеся контакты энкодера...
Работа с far manager
Фар менеджер - один из самых удобных файловых менеджеров, рассчитанный на работу с файлами и папками на дисках, прежде всего,...
Работа с классами python
Серия контента: Этот контент является частью # из серии # статей: Этот контент является частью серии: Следите за выходом новых...
Регулярные выражения perl примеры
Regular expressions, или регулярные выражения - способ определения символьной маски для последующего сравнения с ней строки символов или для обработки...
Adblock detector