Решение пределов с натуральным логарифмом примеры

Решение пределов с натуральным логарифмом примеры

Содержание:

В процессе нахождения предела показательно-степенной функции типа lim x → x 0 ( f ( x ) ) g ( x ) часто работаем с такими степенными неопределенностями, как " open=" 1 ∞ , " open=" 0 0 , " open=" ∞ 0 .

Для их раскрытия необходимо задействовать логарифмирование a = e ln ( a ) , свойство логарифма a · ln ( b ) = ln ( b a ) и применение его предела заданной непрерывной функции, причем ее знак разрешено менять местами.

Для этого производятся преобразования вида:

lim x → x 0 ( f ( x ) ) g ( x ) = e ln lim x → x 0 f ( x ) ) g ( x ) = e lim x → x 0 ( ln ( f ( x ) ) g ( x ) = e lim x → x 0 ( g ( x ) ln ( f ( x ) ) ) = = e lim x → x 0 ln ( f ( x ) ) 1 g ( x )

Отсюда видно, что задание приводится к нахождению предела заданной функции вида e lim x → x 0 ln ( f ( x ) ) 1 g ( x ) = " open=" ∞ ∞ или " open=" 0 0 .

Данный случай рассматривает методы:

  • непосредственного вычисления;
  • использования правила Лопиталя;
  • с заменой эквивалентных бесконечно малых функций;
  • применение первого замечательного предела.

Для того, чтобы неопределенность была раскрыта, необходимо применять второй замечательный предел, при наличии " open=" 1 ∞ .

Рассмотрим теорию на элементарных примерах заданий.

Найти предел заданной функции lim x → 0 ( x 3 + 2 x + 1 ) 3 2 x 3 + x .

Для решения необходимо произвести подстановку. Получаем :

lim x → 0 ( x 3 + 2 x + 1 ) 3 2 ( x 3 + x ) = ( 0 3 + 2 · 0 + 1 ) 3 2 ( 0 3 + 0 ) = 1 ∞

Получение единицы в степени бесконечность называют неопределенностью, значит, необходимо решить другим методом.

Следует произвести преобразования данного предела. Получаем:

lim x → 0 ( x 3 + 2 x + 1 ) 3 2 ( x 3 + x ) = e ln lim x → 0 ( x 3 + 2 x + 1 ) 3 2 ( x 3 + x ) = = e lim x → 0 ln ( x 3 + 2 x + 1 ) 3 2 ( x 3 + x ) = e lim x → 0 3 ln ( x 3 + 2 x + 1 ) 2 ( x 3 + x )

Видим, что преобразование сводится к пределу вида lim x → 0 3 ln ( x 3 + 2 x + 1 ) 2 ( x 3 + x ) .

lim x → 0 3 ln ( x 3 + 2 x + 1 2 ( x 3 + x ) = " open=" 0 0 = 3 2 lim x → 0 ln ( x 3 + 2 x + 1 ) x 3 + x = = 3 2 lim x → 0 x 3 + 2 x x 3 + x = 3 2 lim x → 0 x 2 + 2 x 2 + 1 = 3 2 · 0 2 + 2 0 2 + 1 = 3

Данные преобразования были выполнены при помощи применения замены логарифма на эквивалентную бесконечно малую функцию.

Тогда исходный предел принимает вид lim x → 0 ( x 2 + 2 x + 1 ) 3 2 ( x 3 + x ) = e 3 .

Вычисление данного предела возможно с применением второго замечательного предела. Тогда получаем:

lim x → 0 ( x 2 + 2 x + 1 ) 3 2 ( x 3 + x ) = lim x → 0 ( 1 + ( x 3 + 2 x ) 1 x 3 + 2 x ( x 3 + 2 x ) 3 2 ( x 3 + x ) = = lim x → 0 ( 1 + ( x 3 + 2 x ) ) 1 x 3 + 2 x 3 ( x 3 + 2 x ) 2 ( x 3 + x ) = lim x → 0 1 + ( x 3 + 2 x ) ) 1 x 3 + 2 x 3 ( x 2 + 2 ) 2 ( x 2 + 1 ) = = lim x → 0 ( 1 + ( x 3 + 2 x ) 1 x 3 + 2 x 3 = e 3

Найти и вычислить предел lim x → π 2 ( t g x ) 2 c o s x

Если произведем подстановку, в результате получим ответ в виде бесконечности в степени ноль, а это является знаком, что необходимо применить другой метод для преобразования. Получаем:

lim x → π 2 ( t g x ) 2 c o s x = " open=" ∞ 0 = e ln lim x → π 2 ( t g x ) 2 cos x = = e 2 lim x → π 2 ( t g x ) 2 cos x = e lim x → π 2 ( 2 cos x · ln · ( t g x ) ) = = e 2 lim x → π 2 ln ( t g x ) 1 cos x

Читайте также:  Умные часы e ink

Отсюда видно, что решение сводится к переделу lim x → π 2 ln ( t g x ) 1 cos x = " open=" ∞ ∞ .

Для дальнейшего преобразования применим правило Лопиталя, так как получили неопределенность в виде частного бесконечностей. Видим, что

lim x → π 2 ln ( t g x ) 1 cos x = " open=" ∞ ∞ = lim x → π 2 = ln ( t g x ) ‘ 1 cos ( x ) ‘ = = lim x → π 2 1 t g ( x ) · 1 cos 2 ( x ) sin ( x ) cos 2 ( x ) = lim x → π 2 cos ( x ) sin 2 ( x ) = cos π 2 sin 2 π 2 = 0 1 2 = 0

Отсюда следует, что пределом показательно-степенной функции является результат, полученный при вычислении. Имеем вы предел вида lim x → π 2 ( t g x ) 2 cos x = e 2 · 0 = e 0 = 1 .

Обычно второй замечательный предел записывают в такой форме:

Число $e$, указанное в правой части равенства (1), является иррациональным. Приближённое значение этого числа таково: $eapprox<2<,>718281828459045>$. Если сделать замену $t=frac<1>$, то формулу (1) можно переписать в следующем виде:

Как и для первого замечательного предела, неважно, какое выражение стоит вместо переменной $x$ в формуле (1) или вместо переменной $t$ в формуле (2). Главное – выполнение двух условий:

  1. Основание степени (т.е. выражение в скобках формул (1) и (2)) должно стремиться к единице;
  2. Показатель степени (т.е. $x$ в формуле (1) или $frac<1>$ в формуле (2)) должен стремиться к бесконечности.

Говорят, что второй замечательный предел раскрывает неопределенность $1^infty$. Заметьте, что в формуле (1) мы не уточняем, о какой именно бесконечности ($+infty$ или $-infty$) идёт речь. В любом из этих случаев формула (1) верна. В формуле (2) переменная $t$ может стремиться к нулю как слева, так и справа.

Отмечу, что есть также несколько полезных следствий из второго замечательного предела. Примеры на использование второго замечательного предела, равно как и следствий из него, очень популярны у составителей стандартных типовых расчётов и контрольных работ.

Сразу отметим, что основание степени (т.е. $frac<3x+1><3x-5>$) стремится к единице:

При этом показатель степени (выражение $4x+7$) стремится к бесконечности, т.е. $lim_(4x+7)=infty$.

Основание степени стремится к единице, показатель степени – к бесконечности, т.е. мы имеем дело с неопределенностью $1^infty$. Применим формулу (1) для раскрытия этой неопределённости. В основании степени формулы (1) расположено выражение $1+frac<1>$, а в рассматриваемом нами примере основание степени таково: $frac<3x+1><3x-5>$. Посему первым действием станет формальная подгонка выражения $frac<3x+1><3x-5>$ под вид $1+frac<1>$. Для начала прибавим и вычтем единицу:

Читайте также:  Почему компьютер не видит телефон huawei

Следует учесть, что просто так добавить единицу нельзя. Если мы вынуждены добавить единицу, то её же нужно и вычесть, дабы не изменять значения всего выражения. Для продолжения решения учтём, что

Продолжим «подгонку». В выражении $1+frac<1>$ формулы (1) в числителе дроби находится 1, а в нашем выражении $1+frac<6><3x-5>$ в числителе находится $6$. Чтобы получить $1$ в числителе, опустим $6$ в знаменатель с помощью следующего преобразования:

Итак, основание степени, т.е. $1+frac<1><frac<3x-5><6>>$, подогнано под вид $1+frac<1>$, который требуется в формуле (1). Теперь начнём работать с показателем степени. Заметьте, что в формуле (1) выражения, стоящие в показатели степени и в знаменателе, одинаковы:

Значит, и в нашем примере показатель степени и знаменатель нужно привести к одинаковой форме. Чтобы получить в показателе степени выражение $frac<3x-5><6>$, просто домножим показатель степени на эту дробь. Естественно, что для компенсации такого домножения, придется тут же домножить на обратную дробь, т.е. на $frac<6><3x-5>$. Итак, имеем:

Отдельно рассмотрим предел дроби $frac<6cdot(4x+7)><3x-5>$, расположенной в степени:

Согласно формуле (1) имеем $lim_left(1+frac<1><frac<3x-5><6>>
ight )^<frac<3x-5><6>>=e$. Кроме того, $lim_frac<6cdot(4x+7)><3x-5>=8$, поэтому возвращаясь к исходному пределу, получим:

Полное решение без промежуточных пояснений будет иметь такой вид:

Кстати сказать, вовсе не обязательно использовать первую формулу. Если учесть, что $frac<6><3x-5> o<0>$ при $x oinfty$, то применяя формулу (2), получим:

Выражение, стоящее в основании степени, т.е. $7-6x$, стремится к единице при условии $x o<1>$, т.е. $lim_<1>>(7-6x)=7-6cdot1=1$. Для показателя степени, т.е. $frac<3x-3>$, получаем: $lim_<1>>frac<3x-3>=infty$. Итак, здесь мы имеем дело с неопределенностью вида $1^infty$, которую раскроем с помощью второго замечательного предела.

Для начала отметим, что в формуле (1) переменная $x$ стремится к бесконечности, в формуле (2) переменная $t$ стремится к нулю. В нашем случае $x o<1>$, поэтому имеет смысл ввести новую переменную, чтобы она стремилась или к нулю (тогда применим формулу (2)), или к бесконечности (тогда применим формулу (1)). Введение новой переменной, вообще говоря, не является обязательным, это будет сделано просто для удобства решения. Проще всего новую переменную $y$ ввести так: $y=x-1$. Так как $x o<1>$, то $ o<0>$, т.е. $y o<0>$. Подставляя $x=y+1$ в рассматриваемый пример, и учитывая $y o<0>$, получим:

Читайте также:  Кто смотрел мою стр вк

Применим формулу (2). Выражение в основании степени в формуле (2), т.е. $1+t$, соответствует форме выражения в основании степени нашего примера, т.е. $1+(-6y)$ (выражение $-6y$ играет роль $t$). Формула (2) предполагает, что показатель степени будет иметь вид $frac<1>$, т.е. в нашем случае в показателе степени следует получить $frac<1><-6y>$. Домножим показатель степени на выражение $frac<1><-6y>$. Для компенсации такого домножения нужно домножить показатель степени на обратную дробь, т.е. на выражение $frac<-6y><1>=-6y$:

Полное решение без пояснений таково:

Так как $lim_<0>>(cos<2x>)=1$ и $lim_<0>>frac<1><sin^2<3x>>=infty$ (напомню, что $sin o<0>$ при $u o<0>$), то мы имеем дело с неопределённостью вида $1^infty$. Преобразования, аналогичные рассмотренным в примерах №1 и №2, укажем без подробных пояснений, ибо они были даны ранее:

Так как $sin^2x=frac<1-cos<2x>><2>$, то $cos<2x>-1=-2sin^2x$, поэтому:

Здесь мы учли, что $lim_<0>>frac<sin^2><sin^2<3x>>=frac<1><9>$. Подробное описание того, как находить этот предел, дано в соответствующей теме.

Так как при $x>0$ имеем $ln(x+1)-ln=lnleft(frac
ight)$, то:

Раскладывая дробь $frac$ на сумму дробей $frac=1+frac<1>$ получим:

Так как $lim_<2>>(3x-5)=6-5=1$ и $lim_<2>>frac<2x>=infty$, то мы имеем дело с неопределенностью вида $1^infty$. Подробные пояснения даны в примере №2, здесь же ограничимся кратким решением. Сделав замену $t=x-2$, получим:

Можно решить данный пример и по-иному, используя замену: $t=frac<1>$. Разумеется, ответ будет тем же:

Выясним, к чему стремится выражение $frac<2x^2+3><2x^2-4>$ при условии $x oinfty$:

Таким образом, в заданном пределе мы имеем дело с неопределенностью вида $1^infty$, которую раскроем с помощью второго замечательного предела:

Ссылка на основную публикацию
Регулятор громкости для автомагнитолы
Бывший хозяин видимо пытаясь снять магнитолу за рукоятку громкости, сломал её. В результате громкость не регулировалась, а отпаявшиеся контакты энкодера...
Работа с far manager
Фар менеджер - один из самых удобных файловых менеджеров, рассчитанный на работу с файлами и папками на дисках, прежде всего,...
Работа с классами python
Серия контента: Этот контент является частью # из серии # статей: Этот контент является частью серии: Следите за выходом новых...
Регулярные выражения perl примеры
Regular expressions, или регулярные выражения - способ определения символьной маски для последующего сравнения с ней строки символов или для обработки...
Adblock detector