Разложение в ряд логарифмической функции

Разложение в ряд логарифмической функции

Ряд Маклорена (=Макларена) это ряд Тейлора в окрестности точки а=0. Оказывается, большинство практически встречающихся математических функций могут быть с любой точностью представлены в окрестностях некоторой точки в виде степенных рядов, содержащих степени переменной в порядке возрастания. Например, в окрестности точки х=0:

При использовании рядов, называемых рядами Маклорена (=Макларена), смешанные функции, содержащие, скажем, алгебраические, логарифмические, тригонометрические и экспоненциальные функции, могут быть выражены в виде чисто алгебраических функций. С помощью рядов зачастую можно быстро осуществить дифференцирование и интегрирование.

Теорема Маклорена (ряд Маклорена) имеет вид:

где f (x) — функция, имеющая при а=0 производные всех порядков. Rn — остаточный член в ряде Маклорена (=Макларена) (Тейлора при а=0) определяется выражением

k-тый коэффициент (при хk) ряда определяется формулой

Если рассматривать логарифмируемое число как переменную, мы получим логарифмическую функцию y = log ax. Она определена при . Область значений: .

Функция является строго возрастающей при a > 1 и строго убывающей при 0

Прямая x = 0 является левой вертикальной асимптотой, поскольку при a > 1 и при 0

Определение логарифма

В дальнейшем будем считать, что основание логарифма a положительное, не равное единице число: 0,; a
e 1" style="width:105px;height:19px;vertical-align:-10px;background-position: -343px -555px;"> .

Десятичный логарифм – это логарифм по основанию числа 10 : lg x ≡ log10 x .
Натуральный логарифм – это логарифм по основанию числа e : ln x ≡ log e x .

Графики логарифма

График логарифма получается из графика показательной функции зеркальным отражением относительно прямой y = x . Слева изображены графики функции y = log a x для четырех значений основания логарифма: a = 2 , a = 8 , a = 1/2 и a = 1/8 . На графике видно, что при a > 1 логарифм монотонно возрастает. С увеличением x рост существенно замедляется. При 0 1 логарифм монотонно убывает.

Свойства логарифма

Область определения, множество значений, возрастание, убывание

Логарифм является монотонной функцией, поэтому экстремумов не имеет. Основные свойства логарифма представлены в таблице.

1" style="width:41px;height:13px;vertical-align:-6px;background-position: -658px -110px;">
Область определения
Область значений – ∞ – ∞
Монотонность монотонно возрастает монотонно убывает
Нули, y = 0 x = 1 x = 1
Точки пересечения с осью ординат, x = 0 нет нет
+ ∞ – ∞
– ∞ + ∞

Частные значения

Логарифм по основанию 10 называется десятичным логарифмом и обозначается так:

Логарифм по основанию e называется натуральным логарифмом:

Основные формулы логарифмов

Свойства логарифма, вытекающие из определения обратной функции:

Основное свойство логарифмов и его следствия

Формула замены основания

Логарифмирование – это математическая операция взятия логарифма. При логарифмировании, произведения сомножителей преобразуются в суммы членов.
Потенцирование – это математическая операция обратная логарифмированию. При потенцировании заданное основание возводится в степень выражения, над которым выполняется потенцирование. При этом суммы членов преобразуются в произведения сомножителей.

Доказательство основных формул логарифмов

Формулы, связанные с логарифмами вытекают из формул для показательных функций и из определения обратной функции.

Рассмотрим свойство показательной функции
.
Тогда
.
Применим свойство показательной функции
:
.

Читайте также:  Объявление заблокировано на авито что значит

Докажем формулу замены основания.
;
.
Полагая c = b , имеем:

Обратная функция

Обратной для логарифма по основанию a является показательная функция с показателем степени a .

Если 0,;a>0,;a
e 1)" style="width:269px;height:20px;vertical-align:-11px;background-position: -0px -513px;"> , то

Если 0,;a
e 1)" style="width:184px;height:20px;vertical-align:-11px;background-position: -484px -513px;"> , то

Производная логарифма

Производная логарифма от модуля x :
.
Производная n-го порядка:
.
Вывод формул > > >

Для нахождения производной логарифма, его нужно привести к основанию e.
;
.

Интеграл

Интеграл от логарифма вычисляется интегрированием по частям: .
Итак,

Выражения через комплексные числа

Рассмотрим функцию комплексного числа z:
.
Выразим комплексное число z через модуль r и аргумент φ:
.
Тогда, используя свойства логарифма, имеем:
.
Или

Однако, аргумент φ определен не однозначно. Если положить
, где n — целое,
то будет одним и тем же числом при различных n.

Поэтому логарифм, как функция от комплексного переменного, является не однозначной функцией.

Разложение в степенной ряд

При имеет место разложение:

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Автор: Олег Одинцов . Опубликовано: 26-03-2014 Изменено: 03-12-2018

1. Найти производные от данной функции:

2. Вычислить значения производных в точке ; записать коэффициенты по формуле (3). Составить ряд по степеням с этими коэффициентами, который соответствует данной функции

3. Найти область сходимости полученного ряда и записать разложение (1).

Если функция не имеет конечных особых точек, то ряд сходится к ней во всей плоскости

Утверждение

1. Функция, аналитическая в точке , раскладывается в окрестности этой точки в степенной ряд.

2. На границе круга сходимости ряда есть хотя бы одна особая точка функции, т.е. радиус сходимости круга равен расстоянию от центра разложения до ближайшей особой точки функции.

3. Степенной ряд в круге сходимости является рядом Тейлора для своей суммы, т.е. коэффициенты ряда вычисляются по формулам (2), (3).

Логарифмическая функция комплексного переменного

Логарифмическая функция определяется как обратная к показательной функции, причем:

Так как показательная функция- периодическая с периодом , то логарифмическая функция является многозначной. В каждой точке она принимает бесконечно много значений. Функция , где — главное значение аргумента, называется главным значением логарифмической функции. Итак:

Известные правила о логарифме произведения и частного сохраняют свою силу и для многозначного логарифма, а именно при , отличных от нуля верны формулы:

Методика изучения логарифмической функции в школьном курсе математики

Логарифмическая функция – новый математический объект для учащихся. К понятию логарифма учащихся подводят в процессе решения показательного уравнения a x =b в том случае, если b нельзя представить в виде степени с основанием a. Наше уравнение в случае b>0 имеет единственный корень, который называют логарифмом b по основанию a и обозначают loga b, т.е. a logab =b. Одновременно с введением нового понятия учащиеся знакомятся с основным Логарифмическим тождеством. При работе с логарифмами применяются следующие их свойства, вытекающие из свойств показательной функции:

Читайте также:  Кодовые названия процессоров intel

При любом ( ) и любых положительных x и y, выполнены равенства:

При доказательстве используется основное логарифмическое тождество:

x=a logax ; y=a logay

Изучение темы "Показательная и логарифмическая функции" в ряде учебников, рекомендованных ФГОС начинается в 11 классе.

Тригонометрические функции, их основные свойства. Разложение синуса и косинуса в степенной ряд. Синус и косинус в комплексной области. Методика изучения тригонометрических функций в школьном курсе математики.

Функция синус

Область определения: мн-во R всех действительных чисел. Область значений: отрезок [-1; 1]. Функция нечетная. График функции симметричен относительно начала координат. Функция периодическая с наименьшим положительным периодом 2π. Промежутки знакопостоянства: sin x = 0 при x = π·k, k ∈ Z; sin x > 0 при x ∈ (2π·k, π+2π·k), k ∈ Z; sin x 0 при ; cos x 0 при ; tg x 0 при ; ctg x

Экстермумов нет. Функция убывает на каждом интервале области определения.

Разложение синуса и косинуса в степенной ряд.

Рассмотрим тригонометрическую функцию f(x) = sinx. Она имеет производные всех порядков, вычисляемые по формулам и условия-теоремы 3, очевидно, выполняются, так как при всех х и п

Следовательно, sinx разлагается в ряд Тейлора и разложение справедливо при всех x. Найдем коэффициенты ряда Тейлора: ;величина cп зависит от четности или нечетности п:

, .

Таким образом, при любых х верно разложение

(2)

Для тригонометрической функции f (x) = cosx можно так же, как это было сделано выше для sinx,получить разложение в ряд Тейлора, справедливое при любых х:

(3)

Равенство (3) можно также считать определением функции cosх. Можно получить разложение (3) дифференцированием равенства (2).

Синус и косинус в комплексной области.

Формула Эйлера утверждает, что для любого действительного и комплексного числа х выполнено следующее равенство:

,

где e — одна из важнейших математических констант, определяющаяся следующей формулой: , i — мнимая единица

.

При помощи формулы Эйлера можно определить функции sin и cos следующим образом:

,

.

Понятие тригонометрических функций комплексной переменной. Пусть , тогда:

,

.

Тождество Эйлера, связывающее пять фундаментальных математических констант:

является частным случаем формулы Эйлера при .

Методика изучения тригонометрических функций в школьном курсе математики.

Введение понятий sin a, cos a, tg aдля острого угла прямоугольного треугольника рассматривается: Погорелов — 8 кл. стр. 102,108; Атанасян — 8 кл. стр. 180.

Изучение тригонометрических функций sina, cosa, tgaдля угла a Î [0, 180]: Погорелов — 8 кл. стр. 132, Атанасян — 9 кл. стр.239.

При введении данных понятий используется окружность радиуса R (Погорелов) и R=l (Атанасян), взятая на координатной плоскости. От положительного направления оси х откладываем значения угла a. Используя определения для прямоугольного треугольника, получаем: ;

(Погорелов); sin a = у (Атанасян).

Основными целями изучения тригонометрических функций числового аргумента являются:

Читайте также:  Оператор приведения типа c

1) ознакомление учащихся с новым видом трансцендентных функций;

2) развитие навыков вычислительной практики (работа с трансцендентными функциями зачастую требует громоздких вычислений);

3) наглядная иллюстрация всех основных свойств функций (в особенности периодичности);

4) установление межпредметных связей с практикой (изучение колебаний маятника, электрического тока, волновой теории света невозможны без знаний о тригонометрических функциях);

5) развитие логического мышления (обилие формул порождает необходимость преобразований не алгебраического характера, которые носят исследовательский характер).

В изучении тригонометрических функций можно выделить следующие этапы:

I. Первое знакомство с тригонометрическими функциями углового аргумента в геометрии. Значение аргумента рассматривается в промежутке (0 о ;90 о ). На этом этапе учащиеся узнают, что sin, сos, tg и ctg угла зависят от его градусной меры, знакомятся с табличными значениями, основным тригонометрическим тождеством и некоторыми формулами приведения.

II. Обобщение понятий синуса, косинуса, тангенса и котангенса для углов (0 о ;180 о ). На этом этапе рассматривается взаимосвязь тригонометрических функций и координат точки на плоскости, доказываются теоремы синусов и косинусов, рассматривается вопрос решения треугольников с помощью тригонометрических соотношений.

III. Введение понятий тригонометрических функций числового аргумента.

IV. Систематизация и расширение знаний о тригонометрических функциях числа, рассмотрение графиков функций, проведение исследования, в том числе и с помощью производной.

Отметим, что существует несколько способов определения тригонометрических функций. Их можно подразделить на две группы: аналитические и геометрические. К аналитическим способам относят определение функции у = sin х как решения дифференциального уравнения f » (х)=-c*f(х) или как сумму степенного ряда sin х = х – х 3 /3!+ х 5 /5! – …

К геометрическим способам относят определение тригонометрических функций на основе проекций и координат радиус-вектора, определение через соотношения сторон прямоугольного треугольника и определения с помощью числовой окружности. В школьном курсе предпочтение отдается геометрическим способам в силу их простоты и наглядности.

Отметим, что изучение тригонометрических функций в школьном курсе имеет некоторые особенности. Во-первых, до изучения тригонометрических функций, рассматривались функции вида у=f(x), где х и у – некоторые действительные числа, здесь же — углу ставится в соответствие число, что является несколько непривычным для учащихся. Кроме того, раньше все функции задавались формулами, в которых явным образом был указан порядок действий над значениями аргумента для получения значений функции. Теперь же учащиеся сталкиваются с функциями, заданными таблично.

Таким образом, изучая тригонометрические функции, учащиеся лучше начинают разбираться в сущности самого понятия функции. Они начинают осознавать, что функцией может быть зависимость между любыми множествами объектов, даже если они имеют различную природу (лишь бы каждому значению аргумента соответствовало единственное значение функции).

Ссылка на основную публикацию
Работа с far manager
Фар менеджер - один из самых удобных файловых менеджеров, рассчитанный на работу с файлами и папками на дисках, прежде всего,...
Программы для поиска транспорта
Грузы Широкие возможности фильтров позволяют найти точно подходящую для вашего транспорта загрузку. Несколько тысяч свежих предложений. Каждый сможет найти себе...
Программы для полной очистки жесткого диска
Подборка программ, которые помогут очистить жёсткий диск Windows компьютера и его съёмные устройства от ненужных файлов. Эти инструменты помогут найти...
Работа с классами python
Серия контента: Этот контент является частью # из серии # статей: Этот контент является частью серии: Следите за выходом новых...
Adblock detector