Равные дуги стягиваются равными хордами

Равные дуги стягиваются равными хордами

Равная дуга

Равные дуги стягиваются равными хордами. [1]

Равным дугам окружности соответствуют равные хорды. [2]

Равным дугам окружности соответствуют равные поступательные перемещения точки. [3]

Концы равных дуг являются четырьмя вершинами правильного шестиугольника, двумя другими вершинами которого являются середины двух сторон равностороннего треугольника. Продолжая эти стороны на половину их длины, мы получаем больший равносторонний треугольник, три стороны которого содержат чередующиеся стороны шестиугольника. Теперь дальнейшая схема решения становится ясной. [4]

Равные хорды стягивают равные дуги только в равных кругах или в одном кругу ( см. § 31), а здесь круги неравные и эта теорема неприменима. Общая хорда стягивает неравные дуги в неравных кругах. [5]

Равные хорды стягивают равные дуги . [6]

Окружность разделена на равные дуги п диаметрами. Докажите, что основания перпендикуляров, опущенных из произвольной точки М, лежащей внутри окружности, на эти диаметры, являются вершинами правильного многоугольника. [7]

Может ли хорда стягивать равные дуги . Какие центральные углы соответствуют этим дугам. [8]

Все углы опираются на равные дуги и потому также равны. [9]

АпВп, Пороги представляют собой равные дуги окружности радиусом г0 и с центром О; дуговые расстояний между порогами. [10]

Равные хорды стягивают пары соответственно равных дуг . [11]

Ап, делящие ее на равные дуги , и точка X. Докажите, что точки, симметричные X относительно прямых OAi. ОАп, образуют правильный многоугольник. [12]

Окружность радиуса разделена на шесть равных дуг и внутри круга, образованного этой окружностью, через каждые две соседние точки деления проведены равные дуги такого радиуса, что на данной окружности они взаимно касаются. [13]

Искомая линия состоит из четырех равных дуг окружностей , по которым пересекаются плоскости боковых граней пирамиды с поверхностью шара. Поэтому для решения задачи достаточно найти длину одной из этих дуг. [14]

Читайте также:  Количество занимаемых слотов расширения

В одном и том же круге равные дуги стягиваются равными хордами, равные хорды стягивают равные дуги, большая дуга стягивается большей хордой, и обратно. [15]

Выясним, какими свойствами обладают равные хорды и равные дуги.

Равные хорды равноудалены от центра окружности.

Дано : окр. (O;R), AB и CD — хорды,

Соединим центр окружности с концами хорд.

I. Рассмотрим треугольники AOB и COD.

1) AB=CD (по условию)

2) OA=OB=OC=OD (как радиусы).

Следовательно, ∆AOB = ∆COD (по трём сторонам).

Из равенства треугольников следует равенство соответствующих углов: ∠A=∠C.

II. Рассмотрим прямоугольные треугольники AOF и COK.

2) ∠A=∠C (по доказанному).

Из равенства треугольников следует равенство соответствующих сторон: OF=OK.

Что и требовалось доказать .

Если хорды равноудалены от центра окружности, то они равны.

Дано: окр. (O;R), AB и CD — хорды,

Соединим центр окружности с концами хорд.

I. Рассмотрим прямоугольные треугольники OKD и OFB.

1)OF=OK (по условию)

2)OD=OB (как радиусы).

Из равенства треугольников следует равенство соответствующих сторон:

II. Рассмотрим треугольники AOB и COD.

Так как OA=OB=OC=OD (как радиусы), треугольники AOB и COD — равнобедренные с основаниями AB и CD и высотами OK и OF соответственно.

По свойству равнобедренного треугольника, OK и OF — медианы, то есть AF=BF, CK=DK, откуда AB=CD.

Что и требовалось доказать.

Равные хорды стягивают равные дуги.

Дано : окр. (O;R), AB и CD — хорды, AB=CD,

Соединим центр окружности с концами хорд.

Рассмотрим треугольники AOB и COD

1) AB=CD (по условию)

2) OA=OB=OC=OD (как радиусы).

Следовательно, ∆AOB = ∆COD (по трём сторонам).

Из равенства треугольников следует равенство соответствующих углов: ∠AOB=∠COD.

Значит и дуги, на которые опираются эти центральные углы, также равны: ∪AB=∪CD

Читайте также:  Прохождение игры spellforce 2

Что и требовалось доказать .

Хорды, стягивающие равны дуги, равны.

Дано: окр. (O;R), AB и CD — хорды,

Соединим центр окружности с концами хорд.

Рассмотрим треугольники AOB и COD

Так как OA=OB=OC=OD (как радиусы), то треугольники AOB и COD — равнобедренные с основаниями AB и CD соответственно.

Так как ∪AB=∪CD (по условию), то ∠AOB=∠COD.

Из равенства треугольников следует равенство соответствующих сторон: AB=CD.

ОКРУЖНОСТЬ И КРУГ. ЦИЛИНДР.

§ 71. ЗАВИСИМОСТЬ МЕЖДУ ХОРДАМИ И ДУГАМИ.

Докажем ряд теорем, устанавливающих зависимость между хордами и их дугами в одной и той же окружности или в равных окружностях.

При этом будем иметь в виду дуги, меньшие полуокружности.

Теорема 1. Равные дуги стя гиваются равными хордами.

Пусть дуга АВ равна дуге СК. Требуется доказать, что и хорда АВ равна хорде СК (черт. 314).

Доказательство. Соединим концы хорд с центром окружности — точкой О. Полученные треугольники АОВ и КОС равны, так как имеют по две соответственно равные стороны (радиусы одной окружности) и по равному углу, заключённому между этими сторонами (эти углы равны, как центральные, соответствующие равным дугам). Следовательно, АВ = СК.

Теорема 2 (обратная). Равные хорды стягивают равные дуги.

Пусть хорда АВ равна хорде СК. Требуется доказать, что дуга АВ равна дуге СК (черт. 314).

Доказательство. Соединим концы хорд с центром окружности— точкой О. Полученные треугольники АОВ и КОС равны по трём соответственно равным сторонам. Следовательно, равны углы АОВ и СОК; но углы эти центральные, соответствующие дугам АВ и СК; из равенства этих углов следует равенство дуг: АВ = СК.

Теорема 3. Большая дуга стягивается и большей хордой.

Пусть дуга АВ больше дуги СК (черт. 315).

Читайте также:  Покупки в приложении андроид

Требуется доказать, что хорда АВ больше хорды СК.

Доказательство. Передвинем по окружности дугу СК так, чтобы точка К совместилась с точкой А, тогда точка С займёт положение С’ на дуге АВ между точками A и В, дуга СК примет положение дуги АС’, а хорда СК примет положение хорды АС’. Проведём радиусы в точки A, В и С’. Опустим из центра О перпендикуляры ОЕ и ОD на хорды АВ и АС’. В треугольнике ОFE отрезок ОЕ — катет , а отрезок ОF — гипотенуза, поэтому OF > ОЕ, а потому и OD > OE.

Рассмотрим теперь треугольники ОАD и ОАЕ. В этих треугольниках гипотенуза ОА общая, а катет ОЕ меньше катета ОD, тогда по следствию из теоремы Пифагора (§ 58) катет АЕ больше катета АD. Но эти катеты составляют половины хорд АВ и АС’, значит, и хорда АВ больше хорды АС’. Вследствие равенства хорд АС’ и СК получаем
АВ > СК.

Теорема 4 (обратная). Большая хорда стягивает и большую дугу.

Пусть хорда А В больше хорды СК.

Требуется доказать, что дуга АВ больше дуги СК (черт. 315). Между дугами АВ и СК может существовать только одно из трёх следующих соотношений:

АВ СК.

Но дуга AВ не может быть меньше дуги СК, так как тогда по прямой теореме хорда АВ была бы меньше хорды СК, а это противоречит условию теоремы.

Дуга АВ не может быть равна дуге СК, так как тогда хорда АВ равнялась бы хорде СК, а это тоже противоречит условию. Следовательно, АВ > СК.

Ссылка на основную публикацию
Работа с far manager
Фар менеджер - один из самых удобных файловых менеджеров, рассчитанный на работу с файлами и папками на дисках, прежде всего,...
Программы для поиска транспорта
Грузы Широкие возможности фильтров позволяют найти точно подходящую для вашего транспорта загрузку. Несколько тысяч свежих предложений. Каждый сможет найти себе...
Программы для полной очистки жесткого диска
Подборка программ, которые помогут очистить жёсткий диск Windows компьютера и его съёмные устройства от ненужных файлов. Эти инструменты помогут найти...
Работа с классами python
Серия контента: Этот контент является частью # из серии # статей: Этот контент является частью серии: Следите за выходом новых...
Adblock detector