Работа выхода электрона из вольфрама равна

Работа выхода электрона из вольфрама равна

1. Работа выхода электронов из металла.

Электроны проводимости в кристалле находятся в потенциальной яме. Выход из нее требует совершения работы по преодолению силы, действующей на электрон со стороны кристалла. Найдем эту силу. Обладая энергией теплового движения, электроны могут выскакивать из кристалла на расстояние в несколько периодов. Вышедший из кристалла и находящийся у его поверхности на расстоянии х электрон индуцирует в металле заряд е+ (рис.97). Этот наведенный заряд действует на вышедший электрон так, как если бы он был сосредоточен под поверхностью металла на глубине х в точке, симметричной той, в которой находится электрон (см. Эл-во §5). Индуцированный заряд е+ называется электрическим изображением заряда е. Оба точечные заряда притягиваются друг к другу с силой Кулона . (14.1)

Но это и есть сила притяжения металлом вышедшего из него электрона. Под действием этой силы электрон втягивается обратно в металл. Чтобы удалить электрон из металла, надо совершить работу по преодолению этой силы, перемещая электроны на бесконечность из точки, расположенной на расстоянии х от поверхности металла. В качестве х можно взять межатомное расстояние.

На рис.98 показана зависимость потенциальной энергии электрона от расстояния х до атомной плоскости – стенки металла. Энергетическое расстояние еj от уровня Ферми до нулевого уровня называют термодинамической работой выхода электрона, величину jпотенциалом выхода. Уровень Ес обозначает дно зоны проводимости, где Е = 0. У металлов работа выхода еj заключена в пределах 1,8 ¸ 5,3 эВ. Меньше всего она у щелочных металлов, больше – у золота, серебра, платины (табл. 14.1).

Таблица 14.1
Металл еj, эВ Металл еj, эВ
Литий Li 2,38 Платина Pt 5,32
Натрий Na 2,35 Ванадий V 4,58
Калий К 2,22 Вольфрам W 4,54
Рубидий Rb 2,16 Золото Au 4,30
Цезий Cs 1,18 Серебро Ag 4,30

Большое влияние на работу выхода оказывают мономолекулярные адсорбированные слои. Например, слой атомов цезия Cs на вольфраме W (рис.99). Цезий щелочной металл. Его внешний, валентный электрон связан с ядром значительно слабее, чем валентные электроны в вольфраме. Поэтому атомы цезия отдают вольфраму свои валентные электроны и превращаются в положительные ионы. Между этими ионами и их электрическими изображениями в вольфраме возникает сила притяжения, удерживающая ионы цезия на поверхности вольфрама. Поле этого двойного электрического слоя помогает выходу электронов из вольфрама. По этому в присутствии слоя цезия работа выхода электрона из вольфрама уменьшается с 4,54 эВ до 1,38 эВ. Подобно цезию действуют одноатомные слои бария Ba, церия Cе, тория Th и др.

2. Термоэлектронная эмиссия.

С повышением температуры металла поверхность Ферми разрыхляется, энергия электронов увеличивается, и они поднимаются на более высокие уровни (рис.100). Соответственно уменьшается работа выхода электронов. Поэтому концентрация вылетевших из кристалла электронов в пристеночном слое растет. Процесс испускания электронов нагретым металлом называется термоэлектронной эмиссией.

Формально термоэлектронная эмиссия есть всегда, когда Т > 0 К. Но заметной она становится при температурах Т > 800 К.

Облако термоэлектронов находится в динамическом равновесии. Число вылетевших из металла электронов в каждый промежуток времени примерно равно числу электронов, втянутых в металл. Поэтому суммарный ток эмиссии равен нулю.

На основе термоэлектронной эмиссии построен ламповый вакуумный диод (рис.101). Здесь К – катод, обычно нагреваемая вольфрамовая спираль, А – анод, холодная металлическая пластина обычно цилиндрической формы. По оси этого цилиндра натягивается спираль катода. Оба электрода помещаются в стеклянный сосуд с высоким вакуумом.

Если между катодом и анодом создавать электрическое поле с напряжением U, как показано на рис.101, то термоэлектроны под действием этого поля будут перемещаться от катода к аноду. Возникает электрический ток в вакууме. Вольтамперная характеристика вакуумного диода показана на рис.102. С повышением анодного напряжения U ток I через анод растет почти пропорционально U. Но при достижении некоторого значенья Iнас перестает увеличиваться. Это предельное значение Iнас называют ток насыщением. Он возникает тогда, когда все электроны, вылетевшие из нагретого катода, захватываются полем и переносятся к аноду.

С повышением температуры катода ток насыщения увеличивается. Разделив ток насыщения на поверхность S катода, получаем плотность тока насыщения jнас = iнасçS. В 1901г. Оуэн Ричардсон, исходя из классических представлений, теоретически нашел зависимость плотности тока насыщения от температуры поверхности катода. Уточненная Дешманом в 1923г. с учетом квантовых представлений, зависимость jнас(Т) имеет вид: . Формула Ричардсона-Дэшмана (14.2)

Здесь еj – работа выхода, А – константа, имеющая разное значение у разных металлов и колеблющаяся около теоретического значения А= 1,2·10 6 Аç(м 2 К 2 ).

3. Контактная разность потенциалов.

Рассмотрим процессы, происходящие при контакте двух разных металлов. Допустим, до электрического контакта металл 1 (на рис.103 слева) имеет работу выхода еj1, а работа выхода металла 2 больше, j2 > j1.

Приведем металлы в состояние электрического контакта, то есть сблизим их до такого расстояния, при котором возможен эффективный обмен электронами. Поскольку работа выхода электронов из металла 2 больше, то уровень Ферми в металле 2 ниже, чем в металле 1. В результате электроны проводимости с уровня Ферми металла 1 начинают переходить на уровень Ферми металла 2.

Читайте также:  Компьютерные технологии в бизнесе

В результате такого перехода электронов металл 2 заряжается отрицательно, энергия электронов и, соответственно, уровень Ферми в нем повышаются. Металл 1 заряжается положительно, энергия электронов и уровень Ферми в нем понижаются. Между металлами возникает контактная разность потенциалов j12.

Суммарное перетекание зарядов прекратится, когда уровни Ферми сравняются, а разность потенциалов между проводниками будет равна разности потенциалов выхода, j12 = j2j1, и встречные потоки электронов сравняются n21=-n12 (рис.103 справа). Контактная разность потенциалов между проводниками создает для электронов, переходящих в проводник с большей работой выхода, потенциальный барьер высотой еj12.

Оценим количество электронов, перетекающих из одного металла в другой при возникновении контактной разности потенциалов j12. Будем считать, что между контактирующими металлами остается зазор шириной d, а заряды концентрируются на контактирующих поверхностях. Тогда заряд Q на каждой из поверхностей, необходимый для создания напряжения j12, найдется из формулы плоского конденсатора, . (14.3)

Как видно из таблицы 14.1, контактная разность потенциалов В. Расстояние d между металлами не может быть меньше параметра решетки а » 0,3 нм. Полагая j12 =1 В и d = 0,3 нм, получаем максимальную плотность заряда на контактирующих поверхностях.

.

Разделив на заряд электрона получаем, что на 1 м 2 поверхности приходится 2·10 17 электронов. Если диаметр атомов взять равным постоянной решетки а = 0,3 нм, то на 1 м 2 поверхности в одноатомном слое металла размещается атомов. Если атомы металла содержат по одному валентному электрону, то для создания контактной разности потенциалов 1 В потребовалось всего лишь (2×10 17 ç10 19 )´100% = 2% электронов проводимости одноатомного поверхностного слоя.

4. Закон Вольта.

Контактную разность потенциалов открыл в девяностых годах XVIII века итальянец Александр Вольта. В серии экспериментов 1792–1794 годов он установил, что в цепочке из ряда последовательно соединенных металлов контактная разность потенциалов зависит лишь от крайних металлов. Этот опытный факт называется законом Вольта. Действительно, пусть имеется цепочка из металлов 1,2,3,4 (рис.104). Работа выхода металлов еj1, еj2, еj3, еj4. На границе каждой пары возникает контактная разность:

(14.4)

Просуммировав левые и правые части, получаем: . (14.5)

Сумма всех контактных ЭДС (левой части равенства) равна контактной ЭДС крайних металлов в цепочке (правая часть равенства). Если концы цепи замкнуть, то независимо от количества звенев сумма контактных разностей потенциалов равна нулю. Тока в цепи нет.

5. Термо-ЭДС.

Сумма контактных разностей потенциалов в замкнутой цепи равна нулю лишь при условии, что температуры всех контактов одинаковы. В 1821 г. Томас Зеебек, сжимая концы висмутовой и медной пластинок теплыми пальцами обнаружил, что если цепь замкнута, то в ней протекает ток. Это явление возникновения ЭДС в цепи из разных металлов при перепаде температур между спаями называют эффектом Зеебека или термоэлектричеством. В рамках классической электронной теории можно дать простое толкование явлению Зеебека и получить зависимость термо-ЭДС от перепада температур.

Пусть имеется замкнутая цепь из двух металлов 1 и 2 со спаями A и B (рис.105). Полагаем, что электроны проводимости на верхних уровнях зоны проводимости распределяются в силовом поле решетки по закону Больцмана.

(14.6), (14.7)

Здесь n01 и n02 – концентрация электронов проводимости на уровнях Ферми. В силу полной заполняемости этих уровней будем полагать n01 = n02; U1 и U2 – потенциальная энергия электронов в металлах 1 и 2. Она может изменяться от нуля на уровне Ферми до еj (работа выхода) на нулевом уровне. Разделим первое уравнение на второе.

. (14.8)

Разделив разность U1U2 на заряд электрона е, получаем концентрационную разность потенциалов между металлами 1 и 2. . (14.9)

Если температуры спаев ТА и ТB одинаковы, то концентрационная ЭДС в замкнутой цепи, так же, как контактная разность потенциалов, равна нулю. Тока в цепи нет. Если же температуры спаев разные, ТА ¹ ТB, то в цепи возникает термо-ЭДС (рис.106). Концентрационные перепады потенциалов в контактах А и B разные.

. (14.10)

Концентрация свободных электронов слабо зависит от температуры. Поэтому можно полагать, что n1A = n1В= n1, n2A = n2В = n2. ЭДС, возникающая в цепи, равна . (14.11)

Таблица 14.2
Пара а,
Висмут – Платина –65,0
Железо – Платина +16,0
Медь – Платина +7,4
Никель – Платина –16,4
Сурьма – Платина +47,0
Константан – Платина –34,4

Учитывая грубость классических приближений, обычно выделяют лишь температурную зависимость, которая хорошо подтверждается опытом при малых перепадах температур, . (14.12)

Коэффициент а называют дифференциальной термо-ЭДС пары металлов. В таблице 14.2 приведены значения а для наиболее употребительных металлов в паре с платиной. Чтобы определить величину а пары металлов без платины, надо найти разность значений а в таблице. Например, для пары Bi – Sb, а = -65,0 — 47,0 = -112,0 мкВçК. Для пары медь – константан а = +7,4 — (-34,4) = 48,8 мкВçК.

Читайте также:  Где лежат сохранения игр steam

Термо-ЭДС, возникающая в цепи из разных металлов, широко применяется для измерения температур в диапазоне от 0 К до » 1000°С. Соответствующее устройство из двух разных металлов называется термопарой. Один спай термопары поддерживается при постоянной температуре, например при 0 о С в сосуде с тающим льдом, другой помещают в ту среду, температуру которой хотят измерить. О величине температуры можно судить как по величине термотока, измеряемого гальванометром, так и более точно по величине термо-ЭДС, измеряемой методом компенсации. С помощью термопар можно измерять температуру с точностью до сотых долей градуса.

6. Эффект Пельтье,1834 г.

Он обратен эффекту Зеебека и состоит в том, что при пропускании тока по цепи из разных металлов один контакт у металла нагревается, другой охлаждается.

Пусть в цепи из двух разных металлов действует источник тока – батарея Б. В результате в цепи идет постоянный ток I (рис.107). Проходя спай B, электроны, идущие по цепи на рисунке против часовой стрелки, дополнительно ускоряются полем контактного потенциала. Их скорость дрейфа увеличивается, поэтому при столкновении с узлами электроны передают им большую, по сравнению со средней, энергию. Спай В нагревается больше, чем рядом расположенные участки проводников.

В спае А электроны тормозятся контактным полем, их скорость дрейфа уменьшается, поэтому спай А нагревается меньше, чем рядом расположенные участки проводов. Кроме того, для установления равновесия этих электронов с электронным газом им необходимо приобрести еще энергию. Эту энергию они черпают из решетки. В результате спай А охлаждается больше, чем нагревается. В итоге теплота в спае А поглощается.

Выделяющаяся или поглощающаяся теплота Пельтье QП в контакте пропорциональна заряду It, прошедшему через контакт. . (14.13)

Здесь П – коэффициент Пельтье связан с дифференциальной термо-ЭДС соотношением: П = аDT.(14.14)

Где DТ – разность температур между контактами.

Эффект Пельтье позволяет создавать малогабаритные холодильные устройства. Их особенность в том, что изменяя направление тока в цепи, можно один и тот же контакт заставить как поглощать тепло (холодильник), так и выделять его (нагреватель).

7. Эффект Томсона.

В 1853 – 54 г.г. Рудольф Клаузиус и Уильям Томсон независимо друг от друга применили к явлениям термоэлектричества принципы термодинамики. В процессе построения термодинамической теории термоэлектричества Томсон установил, что неравномерно нагретый проводник должен вести себя как система находящихся в контакте физически разнородных участков. На этом основании Томсон пришёл к заключению и подтвердил его экспериментально, что в однородном неравномерно нагретом проводнике должно выделяться или поглощаться тепло Пельтье (тепло Томсона). Само явление назвали эффектом Томсона.

Принципиальная схема экспериментальной установки изображена на рис.108

Концы двух одинаковых проводящих стержней помещены в два термостата с разными температурами Т1 и Т2. Допустим, Т1 > Т2. Тогда градиент температуры в верхнем стержне направлен по току I, а в нижнем – против тока. В результате в одном стержне выделяется тепло Томсона (его температура выше), а в другом – поглощается.

Знак эффекта у разных проводников разный. В висмуте и цинке, например, тепло выделяется, если поток тепла и электрический ток совпадают по направлению (на рисунке нижний проводник). А в Fe, Pt, Sb при тех же условиях тепло поглощается. С изменением направления тока знак эффекта во всех проводниках меняется.

Тепло Томсона Q, выделяющееся в проводнике, пропорционально перепаду температур ΔТ, току I, протекающему по проводнику, и времени t Q = σΔTIt.

Здесь σ – коэффициент Томсона. Он зависит от материала провода и от его температуры. Коэффициент σ невелик. У металлов он порядка 10 –5 ВçК. За положительное направление тока принимают направление градиента температур, то есть направление от холодного конца проводника к горячему. Если тепло при этих условиях выделяется (проводник нагревается), эффект Томсона считается положительным.

Количественно эффект Томсона исследовал в 1867 г. Франсуа Леру. В установке, собранной по схеме рис. 108, к поверхности стержней он присоединял спаи термопар. Пока тока через стержни не было, термоЭДС в цепи термопар была равна нулю. При включении тока через стержни появлялась термоЭДС, величина и знак которой позволяли определить коэффициент Томсона σ.

8. Закон Джоуля – Ленца в замкнутой цепи всегда выполняется. Суммарный эффект Пельтье и Томсона в замкнутой цепи равен нулю, поскольку наряду с участками цепи, где тепло Пельтье и Томсона выделяется, всегда есть участки, где такое же тепло поглощается.

Не нашли то, что искали? Воспользуйтесь поиском:

Работа — выход — вольфрам

Работа выхода вольфрама ( металла, часто применяемого для нити электронной лампы) равна 4 53 эв. Найдите наименьшую скорость ( направленную перпендикулярно к поверхности металла), при которой возможен вылет электрона из нити наружу. Объясните, почему 1 эв равен 1 6 — 10 — 1а эрг. [1]

Работа выхода вольфрама ( металла, часто применяемого для нити электронной лампы) равна 4 53 электронвольта. Найдите наименьшую скорость ( направленную перпендикулярно к поверхности металла), при которой возможен вылет электрона из нити наружу. Масса электрона равна 9 1 10 — 28 г, заряд его равен 4 80 — Ю 10 абс. Объясните, почему 1 эв равен 1 6 — 10 — 12 эрг. [2]

Читайте также:  Время видео в инстаграме сколько секунд

Работа выхода вольфрама ( металла, часто применяемого для нити электронной лампы) равна 4 53 эв. НайДите наименьшую скорость ( направленную перпендикулярно к поверхности металла), при которой возможен вылет электрона из нити наружу. Масса электрона равна 9 1 Ю-28 г. зарядего равен 4 80 — 10 — 10 абс. Объясните, почему 1 эв равен 1 6 — 10 — 12 эрг. [3]

Значения работы выхода вольфрама , полученные из опытов с медью и из опытов с серебром, находятся в хорошем соответствии. [5]

Несколько измерений работы выхода вольфрама , выполненных методом поверхностной ионизации, дают для плоскости ( 110) значения, которые ближе к полученным методом термоэлектронной эмиссии, чем методом холодной эмиссии. [6]

Некоторые из последних работ по термоэлектронному определению работы выхода вольфрама были проведены в СССР. В этом эксперименте, вместо того чтобы исследовать различные кристаллические плоскости одного монокристаллического образца, вырезались пластины с требуемой ориентацией поверхности из различных монокристаллов. К сожалению, описание экспериментальной установки недостаточно полное; так, упоминается диафрагма между поверхностью кристалла и коллектором, но не говорится об ее функциях. [7]

Рений имеет работу выхода, которая превышает работу выхода вольфрама на 0 5 эв. Рений расширяет возможности термоионного источника не только повышением чувствительности. К сожалению, распространению рения в аналитической практике препятствуют большие трудности при прокатке его в фольгу для приготовления лент. Отечественный выпуск рениевой фольги еще не удовлетворяет спроса на этот материал. [8]

Кислородсодержащие соединения, вследствие хемосорбции, могут влиять на работу выхода вольфрама [147], и поскольку различные кристаллографические плоскости ведут себя различно, то плотность эмиссии в пределах электронного пучка может изменяться. Изменение положения электронного пучка будет вызывать изменение в соотношении ин-тенсивностей ионов; еще более серьезной причиной возникновения этих изменений является образование изолирующих пленок на поверхности электродов, потенциалы которых определяют регулирование электронного пучка. Источники для аналитической работы должны легко разбираться для чистки и удаления этих отложений. Такую операцию следует производить не реже, чем один раз. [10]

Реактивные металлы, обладающие малой работой выхода, оказывают сильное влияние на работу выхода вольфрама , снижая ее величину. [11]

Металлы, обладающие большей химической активностью и имеющие сами по себе низкую работу выхола, оказывает огромное влияние на работу выхода вольфрама , резко понижая ее. Лучше всего они действуют в виде сплошных омш томных слоев, хотя их эффект весьма значителен и при неполных однотомных слоях. Влияние тория было обнаружено благола я случайному присутствию этого элемента в вольфрамовой рог олоке: окись тория добавлялась для облегчения НЫТЯГИЧРНИЯ проволоки, после чего происходило выделение металлического тория, который медленно диффундировал к поверхности нити. [12]

Полученные результаты трудно объяснить, однако Рейманн [57], использовав эти данные, показал, что адсорбция кислорода на вольфраме увеличивает работу выхода вольфрама на 1 75 в при 1500 К. [13]

Поскольку до недавнего времени считалось, что все загрязнения, в том числе и пленку окисла, можно удалить с поверхности вольфрамового образца простым нагреванием до температуры свыше 2600 К, то на измерения работы выхода вольфрама было затрачено больше усилий, чем на какой-либо другой материал. Вольфрам обладает также некоторыми другими преимуществами. Его твердость мало уменьшается при высоких температурах. Из-за большой энергии связи очень тонкое вольфрамовое острие способно выдерживать очень большие напряженности поля, прикладываемого в опытах по холодной эмиссии. Вольфрам образует большие монокристаллы просто за счет перекристаллизации проволок или лент, нагретых до температур, необходимых для очистки и дегазации. Однако наблюдением дифракции медленных электронов было установлено, что одну из растворимых примесей, а именно углерод, невозможно удалить с поверхности простым нагреванием. [14]

К пленочным катодам относятся торированный и барированный вольфрам. В них работа выхода вольфрама снижается образованием поверхностной пленки атомов тория или бария на поверхности вольфрама. [15]

Задачи с объяснениями. Сайт существует, благодаря рекламе Google. Пожалуйста, отключите блокировщик рекламы

вторник, 27 августа 2019 г.

Определите работу выхода электрона из вольфрама, если длина волны красной границы фотоэффекта равна 2,76×10^-7 м.

Определите работу выхода электрона из вольфрама, если длина волны красной границы фотоэффекта равна 2,76×10^-7 м.

Чтобы выйти из материала вещества (выполнить работу выхода), электрон должен обладать энергией, достаточной для выполнения работы выхода.

При фотоэффекте энергию электрону сообщают фотоны света. Энергия фотона зависит от длины волны фотона и выражается формулой:

где (h,;c,;lambda) — соответственно постоянная Планка, скорость света в вакууме, длина волны фотона.

Как видим, длина волны в знаменателе формулы. Это значит, что чем больше длина волны фотона, тем меньше его энергия.

Максимальная длина волны, при которой фотон еще обладает энергией достаточной для выполнения электроном работы выхода, называется длиной волны красной границы фотоэффекта.

Ссылка на основную публикацию
Программы для поиска транспорта
Грузы Широкие возможности фильтров позволяют найти точно подходящую для вашего транспорта загрузку. Несколько тысяч свежих предложений. Каждый сможет найти себе...
Программа для отформатировать флешку
Процесс форматирования флешки мало отличается от форматирования HDD или SSD-дисков. Далее мы рассмотрим лучшие программы для форматирования флешек (такие как...
Программа для оцифровки винила
Каталог продаваемых пластинок (49230) Минимальные аппаратные требования, или что надо иметь для оцифровки Компьютер со звуковой картой. Проигрыватель винила Корректор...
Программы для полной очистки жесткого диска
Подборка программ, которые помогут очистить жёсткий диск Windows компьютера и его съёмные устройства от ненужных файлов. Эти инструменты помогут найти...
Adblock detector