Промежутки знака постоянства квадратичной функции

Промежутки знака постоянства квадратичной функции

При пользовании «Инфоуроком» вам не нужно платить за интернет!

Минкомсвязь РФ: «Инфоурок» включен в перечень социально значимых ресурсов .

Итак, мы познакомились с функцией, узнали, что такое область определения и область значений функции. Теперь рассмотрим свойства функций. Их существует много, однако, изучаются они постепенно. В 9 классе мы знакомимся с нулями функции, промежутками возрастания и убывания (монотонность) и промежутками знакопостоянства и чётностью (нечётностью) функции. Рассмотрим их подробно.

Нулями функции называются значения независимой переменной (аргумента), при которых значение функции равно нулю. В графической интерпретации нулями функции являются абсциссы точек пересечения графика с осью абсцисс (осью х).

На графике нули функции: .

Для того, чтобы найти нули функции, заданной аналитически, необходимо решить уравнение: . Корни этого уравнения являются нулями функции.

Например, найти нули функции .

Промежутками знакопостоянства функции называются промежутки значений аргумента, на которых значения функции либо только положительны, либо только отрицательны. Другими словами, это те промежутки, на которых функция сохраняет свой знак.

Рассматривая график сверху, найдём промежутки знакопостоянства.

функция принимает только положительные значения на тех участках графика, где он находится выше оси Ох, т.е. при ;

функция принимает только отрицательные значения на тех участках графика, где он находится ниже оси Ох, т.е. при .

Для того, чтобы найти промежутки знакопостоянства функции, заданной аналитически, необходимо решить неравенства: и . Решения этих неравенств и будут промежутками знакопостоянства функции.

Например, найти промежутки знакопостоянства функции .

Это неравенство можно решить двумя способами: с помощью систем неравенств и методом интервалов. Метод интервалов будет рассмотрен нами чуть позже, поэтому воспользуемся системами неравенств. Произведение двух множителей положительно, если эти множители имеют одинаковый знак. Значит, получается совокупность двух систем:

Теперь находим промежутки, на которых функция принимает отрицательные значения.

Произведение двух множителей отрицательно, если эти множители имеют разные знаки, т.е.

Читайте также:  Если девушка присылает свои фотографии

Чётной называется функция, если противоположным значениям аргумента соответствуют одинаковые значения функции, т.е. . График чётной функции симметричен относительно оси ординат (оси Оу).

Нечётной называется функция, если противоположным значениям аргумента соответствуют противоположные значения функции, т.е. . График нечётной функции симметричен относительно начала координат.

На рисунке слева график чётной функции, на рисунке справа – нечётной функции.

Для того, чтобы определить чётность функции, заданной аналитически, необходимо в заданную функцию вместо х подставить –х и произвести упрощение. Если в результате получится функция, равная заданной, то функция чётная; если получится функция, противоположная заданной, то она нечётная; если не получится ни один из предложенных вариантов, то функция не является ни чётной, ни нечётной.

Например, исследовать на чётность функцию .

Находим значение этой функции при противоположном значении х, т.е.

Полученное выражение не совпадает с заданным и не противоположно ему, значит, функция не является ни чётной, ни нечётной. Её график не симметричен относительно оси Оу и не симметричен относительно начала координат.

Приведём ещё один пример: .

После упрощения получили выражение, полностью совпадающее с заданным. Значит, функция является чётной и её график симметричен относительно начала координат.

Функция называется возрастающей на некотором промежутке, если большему значению аргумента из этого промежутка соответствует большее значение функции (или меньшему значению аргумента соответствует меньшее значение функции), т.е. если при , то функция возрастающая.

Функция называется убывающей на некотором промежутке, если большему значению аргумента из этого промежутка соответствует меньшее значение функции (или меньшему значению аргумента соответствует большее значение функции), т.е. если при , то функция убывающая.

Для примера рассмотрим графики на рисунках выше.

Синий график: функция возрастает при

функция убывает при

Зелёный график: функция возрастает при

функция убывает при

Промежутки возрастания и убывания функции называются промежутками монотонности функции.

Если функция задана аналитически, то нахождение промежутков монотонности является более сложным процессом и он изучается в 11 классе. Мы ограничимся определением этих промежутков по графикам.

Читайте также:  Программа для скачивания фото на телефон

Наибольшим значением функции называется самое большое значение функции по сравнению со всеми остальными.

Наименьшим значением функции называется самое маленькое значение функции по сравнению со всеми остальными.

Строгое определение наибольшего и наименьшего значения функции будет дано в старших классах.

На синем графике наибольшего значения нет, т.к. график бесконечен в положительном направлении оси Оу. А наименьшее значение равно . Записывается это так: .

На зелёном графике нет ни наибольшего, ни наименьшего значения функции.

На рисунках изображены части графиков нечётных функций. Достройте эти графики.

Ответ или решение 1

Решение: Интервал знакопостоянства – это интервал, в каждой точке которого функция положительна либо отрицательна.

Существует следующий алгоритм метода интервалов :

  • Находим область определения функции.
  • Находим нули функции(точки пересечения графика с осью абсцисс).
  • В большинстве заданий потребуется чертёж. Чертим ось и откладываем на ней точки разрыва (если они есть), а также нули функции (если они есть).
  • Определяем знаки функции на интервалах, которые входят в область определения.

Теперь выполняем задание в указанном порядке:

1) x / (9 — x 2 ), видно, что (9 — x 2 ) ≠ 0, x 2 ≠ 9 , x1 ≠ — 3, x2 ≠ 3 ;

областью определения этой функции будут промежутки:

( -∞ ; — 3 ) ∪ (-3 ; 0) ∪ (0 ; 3) ∪ (3 ; ∞).

2) Находим нули функции. Для этого решаем уравнение .

В нашем случае: x / (9 — x 2 ) = 0; очевидно что x = 0

3) Откладываем все найденные точки на числовой оси OX точки:

Определяем знак функции на интервалах.

Чтобы выяснить знак функции на каком-либо интервале, достаточно подставить в функцию любое число из этого интервала.

Из ( -∞ ; — 3 ) берем число -4;

-4 / (9 – 16 ) = — 4 / — 7 > 0.; при x -> -∞ , f(x) -> ∞.

Читайте также:  Ответы на игру найди отличия все уровни

Из (-3 ; 0) выбери число -1;

Из (0 ; 3) выбери число 1;

1 / ( 9 – 1) > 0. при x -> 3 , f(x) -> ∞.

Из ( 3 ; ∞) выбери число 4;

Ответ: Промежутки знакопостоянства :

( -∞ ; — 3 ) ∪ (-3 ; 0) ∪ (0 ; 3) ∪ (3 ; ∞)

Урок 2. Алгебра 9 класс

Конспект урока "Свойства функций"

На прошлом уроке мы с вами изучили понятие функция. Изучили её график и научились находить область определения и область значений функции.

· промежутки знакопостоянства функции;

· промежутки монотонности функции.

Нулями функции называют такие значения аргумента, при которых функция равна нулю.

В данном случае функция задана графически и мы определили нули функции по графику. Так же нули функции можно находить по формуле, с помощью которой задана функция.

Решив уравнение, мы найдём те значения х, при которых функция равна нулю.

Стоит обратить внимание на то, что не каждая функция имеет нули.

График не пересекает ось икс ни в одной точке.

Промежутки знакопостоянства функции

Промежутки знакопостоянства функции — это такие промежутки из области определения, на которых данная функция принимает значения только одного знака, либо положительные, либо отрицательные.

Функция принимает положительные значения:

И отрицательные значения:

Запишите промежутки знакопостоянства функции:

Положительные и отрицательные значения функции:

Промежутки монотонности функции

Функция называется возрастающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует большее значение функции.

Функция называется убывающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует меньшее значение функции.

Промежутками монотонности называют такие промежутки из области определения, на которых функция либо возрастает, либо убывает.

Опишем свойства функции:

Графиком является прямая, поэтому для построения достаточно двух точек:

Найдём значения функции:

Областью определения и областью значений будет множество всех действительных чисел. Ведь х и у могут быть любыми числами.

Ссылка на основную публикацию
Программы для поиска транспорта
Грузы Широкие возможности фильтров позволяют найти точно подходящую для вашего транспорта загрузку. Несколько тысяч свежих предложений. Каждый сможет найти себе...
Программа для отформатировать флешку
Процесс форматирования флешки мало отличается от форматирования HDD или SSD-дисков. Далее мы рассмотрим лучшие программы для форматирования флешек (такие как...
Программа для оцифровки винила
Каталог продаваемых пластинок (49230) Минимальные аппаратные требования, или что надо иметь для оцифровки Компьютер со звуковой картой. Проигрыватель винила Корректор...
Программы для полной очистки жесткого диска
Подборка программ, которые помогут очистить жёсткий диск Windows компьютера и его съёмные устройства от ненужных файлов. Эти инструменты помогут найти...
Adblock detector