Определить четность и нечетность функции калькулятор

Определить четность и нечетность функции калькулятор

Ключевые слова: онлайн калькулятор, исследовать функцию на четность.

Четной функция называется тогда, когда для любых двух различных значений ее аргумента f (-x)= f(x), напр., y = |x|; нечетной называется такая функция, когда f(–x) = –f(x), напр., y = x 2n+1 , где n — любое натуральное число. Функции, которые не являются ни четными, ни нечетными, обычно называются аморфными. График четной функции симметричен относительно оси ОУ, а нечетной — относительно начала координат О.

Исследование тригонометрических, степенных и других функций на четность онлайн.

Данный калькулятор предназначен для определения четности и нечетности функции онлайн. Четность и нечетность функции определяет ее симметрию.
Функция y=f(x) является четной, если для любого значения x∈X выполняется следующее равенство: f(-x)=f(x). Область определения четной функции должна быть симметрична относительно ноля. Если точка b принадлежит области определения четной функции, то точка –b также принадлежит данной области определения. График четной функции также будет симметричен относительно центра координат.
Нечетной называется функция y=f(x) при условии выполнения равенства f(-x)=-f(x). График функции нечетной функции, в отличие от четной, симметричен относительно оси координат. Если точка b принадлежит области определения нечетной функции, то точка –b также принадлежит области определения этой функции.

Если функцию нельзя назвать четной или нечетной, то такая функция является функцией общего вида, которая не обладает симметрией.
Для того чтобы определить четность или нечетность функции, необходимо ввести функцию в ячейку. Основные примеры ввода функций для данного калькулятора указаны ниже.

Расшифровка ответов следующая:
• even – четная функция
• odd – нечетная функция
• neither even nor odd – функция общего вида

Основные функции

  • : x^a

Правила ввода функции

  1. Примеры
    ≡ x^2/(x+2)
    cos 2 (2x+π) ≡ (cos(2*x+pi))^2
    ≡ x+(x-1)^(2/3)

Пример №1 . Провести полное исследование функции и построить ее график.

Читайте также:  Экспорт закрытого ключа из реестра

1) Функция определена всюду, кроме точек .

2) Функция нечетная, так как f(-x) = -f(x) , и, следовательно, ее график симметричен относительно начала координат. Поэтому ограничимся исследованием только для 0 ≤ x ≤ +∞.

3) Функция не периодическая.

4) Так как y=0 только при x=0, то пересечение с осями координат происходит только в начале координат.

5) Функция имеет разрыв второго рода в точке , причем , . Попутно отметим, что прямая – вертикальная асимптота.

6) Находим и приравниваем ее к нулю: , откуда x1 = -3, x2 = 0, x3 = 3. На экстремум надо исследовать только точку x=3 (точку x2=0 не исследуем, так как она является граничной точкой промежутка [0, +∞)).

В окрестности точки x3=3 имеет: y’>0 при x 3, следовательно, в точке x3 функция имеет максимум, ymax(3)=-9/2. Найти первую производную функции

7) Находим . Видим, что y’’=0 только при x=0, при этом y” 0 при x>0, следовательно, в точке (0,0) кривая имеет перегиб. Иногда направление вогнутости может измениться при переходе через разрыв кривой, поэтому следует выяснить знак y” и около точек разрыва функции. В нашем случае y”>0 на промежутке (0, ) и y” Найти вторую производную функции

8) Выясним вопрос об асимптотах.

Наличие вертикальной асимптоты установлено выше. Ищем горизонтальные: , следовательно, горизонтальных асимптот нет.

Найдем наклонные асимптоты: , , следовательно, y=-x – наклонная двусторонняя асимптота.

9) Теперь, используя полученные данные, строим чертеж:
Построить график функции

Пример №2 . Построить график функции .
Решение.
1. Область определения функции D(y) = (-∞;0)U(0;∞).
2. Функция не является четной или нечетной.
3. Найдем точки пересечения графика с осью ОХ; имеем
; .
4. Точки разрыва x=0 , причем ; следовательно, x=0 является вертикальной асимптотой графика.
Найдем наклонные асимптоты:
;
.
Наклонная асимптота имеет уравнение y=x .
5. Найдем экстремум функции и интервалы возрастания и убывания. Имеем . Существует единственная критическая точка x =2. В промежутках x∈(-∞ ;0)∪(2; +∞) y’>0, следовательно, функция возрастает; в промежутке x∈(0;2) y’ 0, следовательно, x=2 – точка минимума ymin=3.
6. Найдем интервалы выпуклости и вогнутости кривой и точки ее перегиба. Так как y’’>0 (x≠0), то график функции всюду вогнут. Точек перегиба кривая не имеет.
Строим график функции.

Ссылка на основную публикацию
Определите разность фаз между двумя точками
1. Определить разность фаз в пульсовой волне между двумя точками артерии, расположенными на расстоянии см друг от друга. Скорость пульсовой...
О себе в инстаграмме примеры девушка
К оформлению профиля в Инстаграме подходят с особым трепетом и вниманием. Часто возникает трудность и некоторые не знают, что написать...
О чем снять влог
Как делать влоги в домашних условиях Хотите завести личный дневник в интернете и думаете, на каком ресурсе его лучше всего...
Определите ускорения грузов изображенных на рисунке
2017-04-24 Определить ускорение каждого из тел в системе, изображенной на рис.. Нити нерастяжимы. Массой блоков и нитей можно пренебречь. Трения...
Adblock detector