Общее решение уравнения имеет вид

Общее решение уравнения имеет вид

Рассмотрим тоже самое уравнение, но решим методом вариации произвольной постоянной.
Для нахождения производных C’i составляем систему уравнений:
C’1·e -3x ·cos(2x)+C’2·e -3x ·sin(2x)=0
C’1(-2·e -3x ·sin(2x)-3·cos(2x)·e -3x ) + C’2(-3·e -3x ·sin(2x)+2·cos(2x)·e -3x ) = 8*exp(-x)
Выразим C’1 из первого уравнения:
C’1 = -c2·sin(2x)/(cos(2x))
и подставим во второе. В итоге получаем:
C’1 = -4·e 2x ·sin(2x)
C’2 = 4·cos(2x)·e 2x
Интегрируем полученные функции C’i:
C1 = -e 2x ·sin(2x)+cos(2x)·e 2x + C * 1
C2 = e 2x ·sin(2x)+cos(2x)·e 2x + C * 2
Записываем полученные выражения в виде:
C1 = (-e 2x ·sin(2x)+cos(2x)·e 2x )·cos(2x)·e -3x + C * 1e -3x ·cos(2x)
C2 = (e 2x ·sin(2x)+cos(2x)·e 2x )·e -3x ·sin(2x) + C * 2e -3x ·sin(2x)
или
C1 = -cos(2x)·e -x ·sin(2x)+cos 2 (2x)·e -x + C * 1e -3x ·cos(2x)
C2 = cos(2x)·e -x ·sin(2x)+sin 2 (2x)·e -x + C * 2e -3x ·sin(2x)
y = C1 + C2
Таким образом, общее решение дифференциального уравнения имеет вид:

Пример . y″ + 5y’ + 6 = 12cos(2x)
Cоставляем характеристическое уравнение дифференциального уравнения: r 2 +5 r + 6 = 0
Находим дискриминант: D = 5 2 — 4·1·6 = 1


Корни характеристического уравнения: r1 = -2, r2 = -3. Следовательно, фундаментальную систему решений составляют функции: y1 = e -2x , y2 = e -3x
Общее решение однородного уравнения имеет вид: y =C1·e -2x +C2·e -3x
Найдем частное решение при условии:y(0) = 1, y'(0) = 3
Поскольку y(0) = c1+c2, то получаем первое уравнение:
c1+c2 = 1
Находим первую производную: y’ = -3·c2·e -3·x -2·c1·e -2·x
Поскольку y'(0) = -3·c2-2·c2, то получаем второе уравнение:
-3·c2-2·c2 = 3
В итоге получаем систему из двух уравнений:
c1+c2 = 1
-3·c2-2·c2 = 3
которую решаем или методом обратной матрицы или методом исключения переменных.
c1 = 6, c2 = -5
Тогда частное решение при заданных начальных условиях можно записать в виде: y =6·e -2x -5·e -3x
Рассмотрим правую часть: f(x) = 12·cos(2·x)
Уравнение имеет частное решение вида: y * = Acos(2x) + Bsin(2x)
Вычисляем производные: y’ = -2·A·sin(2x)+2·B·cos(2x); y″ = -4·A·cos(2x)-4·B·sin(2x)
которые подставляем в исходное дифференциальное уравнение: y″ + 5y’ + 6y = (-4·A·cos(2x)-4·B·sin(2x)) + 5(-2·A·sin(2x)+2·B·cos(2x)) + 6(Acos(2x) + Bsin(2x)) = 12·cos(2·x) или -10·A·sin(2x)+2·A·cos(2x)+2·B·sin(2x)+10·B·cos(2x) = 12·cos(2·x)
Приравнивая коэффициенты при одинаковых степенях х, получаем систему линейных уравнений:
-10A + 2B = 0
2A + 10B = 12
СЛАУ решаем методом Крамера:
A = 3 /13;B = 15 /13;
Частное решение имеет вид:
y * = 3 /13cos(2x) + 15 /13sin(2x)
Таким образом, общее решение дифференциального уравнения имеет вид:

Пример 2 . y’’ + y = cos(x)
Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами. Решение уравнения будем искать в виде y = e rx . Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами:

r 2 + 1 = 0
D = 0 2 — 4·1·1 = -4

Корни характеристического уравнения:
(комплексные корни):
r1 = i, r2 = -i
Следовательно, фундаментальную систему решений составляют функции:
y1 = e 0 x cos(x) = cos(x)
y2 = e 0 x sin(x) = sin(x)

Общее решение однородного уравнения имеет вид: y =C1·cos(x)+C2·sin(x)

Рассмотрим правую часть: f(x) = cos(x)

Найдем частное решение. Линейное дифференциальное уравнение с постоянными коэффициентами и правой частью вида:
R(x) = e αx (P(x)cos(βx) + Q(x)sin(βx)), где P(x), Q(x) — некоторые полиномы
имеет частное решение
y(x) = x k e αx (R(x)cos(βx) + S(x)sin(βx))
где k — кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) — полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).
Здесь P(x) = 0, Q(x) = 0, α = 0, β = 1.
Следовательно, число α + βi = 0 + 1i является корнем характеристического уравнения кратности k = 1(r1).

Читайте также:  Почему не показывает сериалы в интернете

Уравнение имеет частное решение вида:
y * = x (Acos(x) + Bsin(x))
Вычисляем производные:
y’ = sin(x)(B-A·x)+cos(x)(A+B·x)
y″ = cos(x)(2·B-A·x)-sin(x)(2·A+B·x)
которые подставляем в исходное дифференциальное уравнение:
y″ + y = (cos(x)(2·B-A·x)-sin(x)(2·A+B·x)) + (x (Acos(x) + Bsin(x))) = cos(x)
или
2·B·cos(x)-2·A·sin(x) = cos(x)
Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:
2B = 1
-2A = 0
Следовательно:
A = 0; B = 1 /2;
Частное решение имеет вид: y * = x (0cos(x) + ½ sin(x)) = ½ x sin(x)

Таким образом, общее решение дифференциального уравнения имеет вид:

Определение и примеры

Вспомним задачу, которая стояла перед нами при нахождении определенных интегралов:

или dy = f(x)dx. Ее решение:

и сводится она к вычислению неопределенного интеграла. На практике чаще встречается более сложная задача: найти функцию y , если известно, что она удовлетворяет соотношению вида

(9.1)

Это соотношение связывает независимую переменную x, неизвестную функцию y и ее производные до порядка n включительно, называются дифференциальные уравнения.

В дифференциальное уравнение входит функция под знаком производных (или дифференциалов) того или иного порядка. Порядок наивысшей производной называется порядком (9.1).

— первого порядка,

— второго порядка,

— пятого порядка и т. д.

Функция, которая удовлетворяет данному дифференциальному уравнению, называется его решением, или интегралом. Решить его — значит найти все его решения. Если для искомой функции y удалось получить формулу, которая дает все решения, то мы говорим, что нашли его общее решение, или общий интеграл.

Общее решение содержит n произвольных постоянных и имеет вид

Если получено соотношение, которое связывает x, y и n произвольных постоянных, в виде, не разрешенном относительно y

,

то такое соотношение называется общим интегралом уравнения (9.1).

Задача Коши

Каждое конкретное решение, т. е. каждая конкретная функция, которая удовлетворяет данному дифференциальному уравнению и не зависит от произвольных постоянных, называется частным решением, или частным интегралом . Чтобы получить частные решения (интегралы) из общих, надо постоянным придают конкретные числовые значения.

График частного решения называется интегральной кривой . Общее решение, которое содержит все частные решения, представляет собой семейство интегральных кривых. Для уравнения первого порядка это семейство зависит от одной произвольной постоянной, для уравнения n -го порядка — от n произвольных постоянных.

Задача Коши заключается в нахождении частного решение для уравнения n -го порядка, удовлетворяющее n начальным условиям:

по которым определяются n постоянных с 1 , с 2 . c n.

Дифференциальные уравнения 1-го порядка

Для неразрешенного относительно производной дифференциальное уравнения 1-го порядка имеет вид

или для разрешенного относительно

Пример 3.46 . Найти общее решение уравнения

Решение. Интегрируя, получим

Читайте также:  Телевизор philips пропал звук

где С — произвольная постоянная. Если придадим С конкретные числовые значения, то получим частные решения, например,

Пример 3.47 . Рассмотрим возрастающую денежную сумму, положенную в банк при условии начисления 100 r сложных процентов в год. Пусть Yo начальная денежная сумма, а Yx — по истечении x лет. При начислении процентов один раз в год,получим

где x = 0, 1, 2, 3. При начислении процентов два раза в год , получим

где x = 0, 1/2, 1, 3/2. При начислении процентов n раз в год и если x принимает последовательно значения 0, 1/n, 2/n, 3/n. тогда

Обозначить 1/n = h , тогда предыдущее равенство будет иметь вид:

При неограниченном увеличении n (при ) в пределе приходим к процессу возрастания денежной суммы при непрерывном начислении процентов:

таким образом видно, что при непрерывном изменении x закон изменения денежной массы выражается дифференциальным уравнением 1- го порядка. Где Y x — неизвестная функция, x — независимая переменная, r — постоянная. Решим данное уравнение, для этого перепишем его следующим образом:

откуда , или , где через P обозначено e C .

Из начальных условий Y(0) = Yo , найдем P: Yo = Pe o , откуда, Yo = P. Следовательно, решение имеет вид:

Рассмотрим вторую экономическую задачу. Макроэкономические модели тоже описываются линейным дифференциальным уравнениям 1-го порядка, описывающим изменение дохода или выпуска продукции Y как функций времени.

Пример 3.48 . Пусть национальный доход Y возрастает со скоростью, пропорциональной его величине:

и пусть, дефицит в расходах правительства прямо пропорционален доходу Y с коэффициентом пропорциональности q. Дефицит в расходах приводит к возрастанию национального долга D:

Начальные условия Y = Yo и D = Do при t = 0. Из первого уравнения Y= Yoe kt . Подставляя Y получаем dD/dt = qYoe kt . Общее решение имеет вид
D = (q/ k) Yoe kt +С, где С = const, которая определяется из начальных условий. Подставляя начальные условия, получаем Do = (q/ k)Yo + С. Итак, окончательно,

D = Do +(q/ k)Yo (e kt -1),

отсюда видно, что национальный долг возрастает с той же относительной скоростью k , что и национальный доход.

Рассмотрим простейшие дифференциальные уравнения n -го порядка, это уравнения вида

Его общее решение получим с помощью n раз интегрирований.

Пример 3.49. Рассмотрим пример y »’ = cos x.

Решение. Интегрируя, находим

Общее решение имеет вид

.

Линейные дифференциальные уравнения

В экономике большое применение имеют линейные дифференциальные уравнения, рассмотрим решение таких уравнений. Если (9.1) имеет вид:

то оно называется линейным, где рo(x), р1(x). рn(x), f(x) — заданные функции. Если f(x) = 0, то (9.2) называется однородными, в противном случае — неоднородным . Общее решение уравнения (9.2) равно сумме какого-либо его частного решения y(x) и общего решения однородного уравнения соответствующего ему:

Если коэффициенты рo (x), р1 (x). рn (x) постоянные, то (9.2) имеет вид

Читайте также:  Как называется кабель для локальной сети

(9.4) называется линейным дифференциальным уравнением с постоянными коэффициентами порядка.

Можно положить без ограничения общности рo = 1 и записать (9.5) в виде

Будем искать решение (9.6) в виде y = e kx , где k — константа. Имеем: ; y ‘ = ke kx , y » = k 2 e kx , . y (n) = k n e kx . Подставим полученные выражения в (9.6), будем иметь:

Т . к . , то

(9.7)

(9.7) есть алгебраическое уравнение, его неизвестным является k, оно называется характеристическим числом. Характеристическое уравнение имеет степень n и n корней, среди которых могут быть как кратные, так и комплексные. Пусть k 1 , k2 . kn — действительные и различные , тогда — частные решения (9.7), а общее

y = .

Рассмотрим линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами:

(9.8)

Его характеристическое уравнение имеет вид

(9.9)

его дискриминант D = р 2 — 4q в зависимости от знака D возможны три случая.

1. Если D>0, то корни k1 и k2 (9.9) действительны и различны, и общее решение имеет вид:

2. Если D = 0, т.е. корни k1 и k2 действительные и равные, и общее решение имеет вид:

3. Если D 2 — 1 = 0, корни которого k1 = 1, k2 = -1 действительны и различны. Общее решение имеет вид:

.

Пример 3.51 . Решить уравнение

Решение. Характеристическое уравнение имеет вид:
k 2 — 4k +4 = 0 или (k — 2) 2 = 0, его корни равные k 1 = k2 = 2, поэтому, общее решение находится по формуле:

Пример 3.52 . Решить

Решение. Характеристическое уравнение: k 2 + 9 = 0, откуда k = ± 3i, a = 0, b = 3, общее решение имеет вид:

Линейные дифференциальные уравнения 2-го порядка применяются при изучении экономической модели паутинообразного типа с запасами товаров, где скорость изменения цены P зависит от величины запаса (см. параграф 10). В случае если спрос и предложение являются линейными функциями цены, то есть

а — есть постоянная, определяющая скорость реакции, то процесс изменения цены описывается дифференциальным уравнением:

За частное решения можно взять постоянную

имеющую смысл цены равновесия. Отклонение удовлетворяет однородному уравнению

(9.10)

Характеристическое уравнение будет следующее:

В случае член положителен. Обозначим . Корни характеристического уравнения k1,2 = ± i w, поэтому общее решение (9.10) имеет вид:

где C и произвольные постоянные, они определяются из начальных условий. Получили закон изменения цены во времени:

Дифференциальным уравнением называется уравнение которое связывает неизвестную функцию и её производные различных порядков:

F ( x , y ‘ , y » , . , y ( n ) ) = 0

Порядком дифференциального уравнения называется порядок его старшей производной. Решить дифференциальное уравнение, значит найти неизвестную функцию y ( x ) , которая обращает это уравнение в верное тождество. Этого можно достичь, изучив теоретический материал по дифференциальным уравнениям, или воспользовавшись нашим онлайн калькулятором.

Наш калькулятор может находить как общее решение дифференциального уравнения, так и частное. Для поиска частного решения, необходимо ввести начальные условия в калькулятор. Для поиска общего решения, поле ввода начальных условий необходимо оставить пустым.

Ссылка на основную публикацию
О себе в инстаграмме примеры девушка
К оформлению профиля в Инстаграме подходят с особым трепетом и вниманием. Часто возникает трудность и некоторые не знают, что написать...
Нет звука при оцифровке видеокассет
Рассмотрим процесс оцифровки и проблемы, которые могут возникнуть при выполнении этого процесса. Задачей этого процесса является преобразование аналогового сигнала в...
Нет зеленого цвета в телевизоре
Пропадание или искажение цвета — одна из самых сложных неисправностей телевизора, поскольку может возникать по самым разным причинам. Данные поломки...
О чем снять влог
Как делать влоги в домашних условиях Хотите завести личный дневник в интернете и думаете, на каком ресурсе его лучше всего...
Adblock detector