Когда напряженность равна нулю

Когда напряженность равна нулю

Четыре равных по модулю электрических заряда расположены в вершинах квадрата (см. рисунок).

Напряжённость электростатического поля, созданного этими зарядами в точке О,

1) равна нулю только в случае, изображённом на рис. А

2) равна нулю только в случае, изображённом на рис. Б

3) равна нулю в случаях, изображённых на обоих рисунках

4) не равна нулю ни в одном из случаев, изображённых на рисунках

Напряженность электрического поля, создаваемого точечным зарядом, пропорциональна величине этого заряда, обратно пропорциональна квадрату расстояния до заряда, направлена "от" положительного и "к" отрицательному заряду. Полное поле получается в результате суперпозиции полей от всех зарядов. Векторы напряженности полей, создаваемых всеми зарядами в точке О, показаны для обоих случаев на рисунке (красные стрелки обозначают поля от положительных зарядов, синие — от отрицательных). Ясно, что напряженность поля равна нулю только в случае Б.

Для поля в диэлектрической среде электростатическая теорема Гаусса может быть записана еще и иначе (альтернативным образом) — через поток вектора электрического смещения(электрической индукции). При этом формулировка теоремы выглядит следующим образом: поток вектора электрического смещения через замкнутую поверхность пропорционален заключённому внутри этой поверхности свободному электрическому заряду:

В дифференциальной форме:

Теорема Гаусса для электрической индукции (электрического смещения)[

Для поля в диэлектрической среде электростатическая теорема Гаусса может быть записана еще и иначе (альтернативным образом) — через поток вектора электрического смещения(электрической индукции). При этом формулировка теоремы выглядит следующим образом: поток вектора электрического смещения через замкнутую поверхность пропорционален заключённому внутри этой поверхности свободному электрическому заряду:

В дифференциальной форме:

Теорема Гаусса для магнитной индукции

Поток вектора магнитной индукции через любую замкнутую поверхность равен нулю:

или в дифференциальной форме

Это эквивалентно тому, что в природе не существует «магнитных зарядов» (монополей), которые создавали бы магнитное поле, как электрические заряды создают электрическое поле [5] . Иными словами, теорема Гаусса для магнитной индукции показывает, что магнитное поле является (полностью) вихревым.

Теорема Гаусса для ньютоновской гравитации

Для напряжённости поля ньютоновской гравитации (ускорения свободного падения) теорема Гаусса практически совпадает с таковой в электростатике, за исключением только констант (впрочем, всё равно зависящих от произвольного выбора системы единиц) и, главное, знака [6] :

где g — напряжённость гравитационного поля, M — гравитационный заряд (то есть масса) внутри поверхности S, ρ — плотность массы, G — ньютоновская константа.

Проводники в электрическом поле. Поле внутри проводника и на его поверхности.

Проводниками называют тела, через которые электрические заряды могут переходить от заряженного тела к незаряженному. Способность проводников пропускать через себя электрические заряды объясняется наличием в них свободных носителей заряда. Проводники — металлические тела в твердом и жидком состоянии, жидкие растворы электролитов. Свободные заряды проводника, внесенного в электрическое поле, под его действием приходят в движение. Перераспределение зарядов вызывает изменение электрического поля. Когда напряженность электрического поля в проводнике становится равной нулю, электроны прекращают движение. Явление разделения разноименных зарядов в проводнике, помещенным в электрическое поле называется электростатической индукцией. Внутри проводника электрического поля нет. Это используют для электростатической защиты — защиты с помощью металлических проводников от электрического поля. Поверхность проводящего тела любой формы в электрическом поле является эквипотенциальной поверхностью.

Для получения устройств, которые при небольшом относительно среды потенциале накапливали бы на себе (конденсировали) заметные по величине заряды используют тот факт, что электроемкость проводника возрастает при приближении к нему других тел. Действительно, под действием поля, создаваемого заряженными проводниками, на поднесенном к нему теле возникают индуцированные (на проводнике) или связанные (на диэлектрике) заряды (рис.15.5). Заряды, противоположные по знаку заряду проводника q располагаются ближе к проводнику, чем одноименные с q, и, следовательно, оказывают большое влияние на его потенциал.

Читайте также:  Подключение планшета к домашней сети

Поэтому при поднесении к заряженному проводнику какого либо тела напряженность поля уменьшается, а, следовательно, уменьшается потенциал проводника. Согласно уравнение это означает увеличение емкости проводника.

Конденсатор состоит из двух проводников (обкладок) (рис.15.6), разделенных прослойкой диэлектрика. При приложении к проводнику некоторой разности потенциалов его обкладки заряжаются равными по величине зарядами противоположного знака. Под электроемкостью конденсатора понимается физическая величина, пропорциональная заряду q и обратно пропорциональна разности потенциалов между обкладками

Определим емкость плоского конденсатора.

Если площадь обкладки S , а заряд на ней q, то напряженность поля между обкладками

С другой стороны разность потенциалов между обкладками откуда

Энергия системы точечных зарядов, заряженного проводника и конденсатора.

Всякая система зарядов обладает некоторой потенциальной энергией взаимодействия, которая равна работе, затраченной на создание этой системы. Энергия системы точечных зарядов q1, q2, q3,… qN определяется следующим образом:

,

где φ1 – потенциал электрического поля, создаваемого всеми зарядами кроме q1 в той точке, где находится зарядq1 и т.д. Если изменяется конфигурация системы зарядов, то изменяется и энергия системы. Для изменения конфигурации системы необходимо совершение работы.

Потенциальную энергию системы точечных зарядов можно рассчитать другим способом. Потенциальная энергия двух точечных зарядов q1, q2 на расстоянии друг от друга равна. Если зарядов несколько, то потенциальную энергию этой системы зарядов можно определить как сумму потенциальных энергий всех пар зарядов, которые можно составить для этой системы. Так, для системы трех положительных зарядов энергия системы равна

.

Электрическое поле точечного заряда q на расстоянии от него в среде с диэлектрической проницаемостьюε(см. рисунок 3.1.3).

Рисунок 3.1.3

;

Потенциал – скаляр, его знак зависит от знака заряда, создающего поле.

Рисунок 3.1.4.

Электрическое поле равномерно заряженной сферы радиуса в точке С на расстоянииот её поверхности (рисунок 3.1.4). Электрическое поле сферы аналогично полю точечного заряда, равного заряду сферыqсф и сосредоточенного в её центре. Расстояние до точки, где определяется напряженность, равно (R+a)

;

Потенциал внутри сферы постоянен и равен ,

а напряженность внутри сферы равна нулю

Электрическое поле равномерно заряженной бесконечной плоскости с поверхностной плотностью σ(см. рисунок 3.1.5).

Рисунок 3.1.5.

Поле, напряженность которого во всех точках одинакова, называется однородным.

Поверхностная плотность σ – заряд единицы поверхности (, где– соответственно заряд и площадь плоскости). Размерность поверхностной плотности заряда.

Электрическое поле плоского конденсатора с одинаковыми по величине, но противоположными по знаку зарядами на пластинах (см. рисунок 3.1.6).

Рисунок 3.1.6

Напряженность между обкладками плоского конденсатора , вне конденсатораЕ=0.

Разность потенциалов uмежду пластинами (обкладками) конденсатора: , гдеd – расстояние между обкладками, – диэлектрическая проницаемость диэлектрика, помещённого между пластинами конденсатора.

Поверхностная плотность заряда на пластинах конденсатора равна отношению величины заряда на ней к площади пластины:.

Энергия заряженного уединенного проводника и конденсатора

Если уединенный проводник имеет заряд q, то вокруг него существует электрическое поле, потенциал которого на поверхности проводника равен , а емкость — С. Увеличим заряд на величину dq. При переносе заряда dq из бесконечности должна быть совершена работа равная . Но потенциал электростатического поля данного проводника в бесконечности равен нулю . Тогда

Читайте также:  Toshiba satellite u200 165

При переносе заряда dq с проводника в бесконечность такую же работу совершают силы электростатического поля. Следовательно, при увеличении заряда проводника на величину dq возрастает потенциальная энергия поля, т.е.

Проинтегрировав данное выражение, найдем потенциальную энергию электростатического поля заряженного проводника при увеличении его заряда от нуля до q:

Применяя соотношение , можно получить следующие выражения для потенциальной энергии W:

Для заряженного конденсатора разность потенциалов (напряжение) равна поэтому соотношение для полной энергии его электростатического поля имеют вид

Компания «Дороги Урала» организует интересные экскурсии по столице

Кикоин А.К. Теорема, позволяющая решать основные задачи электростатики //Квант. — 1984. — № 12. — С. 18-20.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Содержание

Известно, что электростатическое поле часто изображают при помощи силовых линий. Попытаемся установить связь между числом силовых линий N и зарядом q, создающим электрическое поле. Для этого введем понятие потока электрического поля.

Потоком электрического поля через некоторую поверхность будем называть произведение ES, где S — площадь поверхности, а Е — модуль вектора напряженности электрического поля, перпендикулярного этой поверхности. [1] (Понятие «поток» здесь введено по аналогии с потоком жидкости, протекающей через поперечное сечение трубы площадью S в единицу времени, который, как известно, равен υS («Физика 8», §65).)

Начнем с простейшего случая — одного точечного заряда. Картина силовых линий поля, созданного положительным точечным зарядом q, изображена на рисунке 1. Рассмотрим сферу радиуса r, центром которой служит сам заряд q, и определим поток электрического поля через поверхность этой сферы. Силовые линии, выходящие из заряда, перпендикулярны поверхности сферы, и в каждой точке сферы, модуль напряженности поля равен

где ε = 8,85·10 -12 Кл 2 /(Н·м 2 )— электрическая постоянная. Но 4πr 2 — это площадь поверхности сферы. Обозначив ее через S, получим:

Отсюда видно, что поток через поверхность сферы электрического поля, созданного точечным зарядом, не зависит от радиуса сферы, а зависит только от самого заряда q. Поэтому, если провести ряд концентрических сфер, то поток электрического поля через все эти сферы будет одинаковым. Очевидно, что и число силовых линий, пересекающих эти сферы, тоже будет одинаковым.

Условились число силовых линий, выходящих из заряда, принимать равным потоку электрического поля:

frac NS), представляющее собой число силовых линий, пересекающих единицу площади поверхности, перпендикулярной (ортогональной) силовым линиям, называют густотой силовых линий. Ясно, что она характеризует величину напряженности поля в данном месте.

Можно показать, что поток электрического поля, а значит и число силовых линий, равняется (

frac<varepsilon_0>) не только для поля одного точечного заряда, но и для поля, создаваемого любой совокупностью точечных зарядов, в частности — заряженным телом. Тогда в формуле (3) q означает алгебраическую сумму всей совокупности зарядов. Мало того, если сферу заменить любой другой замкнутой поверхностью, то поток электрического поля, а следовательно и число силовых линий, пересекающих ее, не изменится.

Утверждение, что поток электрического поля и число силовых линий через замкнутую поверхность, внутри которой находится система зарядов, равняется (

frac<varepsilon_0>), где q — алгебраическая сумма зарядов, называется теоремой Гаусса.

Воспользуемся теоремой Гаусса для решения некоторых конкретных задач электростатики.

Чему равна напряженность электростатического поля внутри проводника?

Известно, что проводник — это такое тело, в котором имеются свободные заряды. Эти заряды действительно свободно могут перемещаться по всему объему проводника. Единственным препятствием для их передвижения служит поверхность проводника, которую они сами покинуть не могут.

Читайте также:  Комната для просмотра фильмов

Рассмотрим изолированный проводник, которому сообщен электрический заряд. Вокруг такого проводника, конечно, создается электростатическое поле. Докажем, что внутри заряженного проводника электростатическое поле отсутствует, то есть напряженность поля равна нулю.

Как известно, в незаряженном проводнике отрицательный заряд всех электронов точно сбалансирован положительным зарядом всех протонов, и их суммарный заряд равен нулю. Но если проводник заряжен, то баланс зарядов нарушается. В проводнике создается избыток свободных электронов, если он заряжен отрицательно, или избыток протонов (недостаток электронов), если он заряжен положительно. В первом случае, взаимно отталкиваясь, избыточные электроны разойдутся друг от друга на максимально возможные расстояния, вследствие чего они расположатся на поверхности проводника (которую покинуть не могут). Внутри же проводника баланс зарядов восстановится, и там суммарный заряд снова станет равным нулю.

Во втором случае, наоборот, часть электронов с поверхности проводника, вследствие сил притяжения к положительным зарядам, устремится внутрь проводника и сбалансирует избыточные положительные заряды. Суммарный заряд внутри проводника снова станет равным нулю, а избыточный положительный заряд сосредоточится на его поверхности.

Выходит, что заряд любого знака, сообщенный проводнику, располагается на его поверхности. Внутри же проводника, то есть внутри замкнутой поверхности, которой в данном случае служит поверхность самого проводника, заряд ранен нулю (q = 0). Но тогда из теоремы Гаусса следует, что

то есть внутри проводника поля нет.

Как направлены силовые линии у поверхности заряженного проводника?

На любой свободный электрон, находящийся на поверхности заряженного проводника, действуют силы со стороны остальных зарядов поверхности (в объеме проводника сумма положительных и отрицательных зарядов равна нулю). Имея возможность свободно перемещаться по поверхности, электроны сами расположатся так, чтобы результирующая сила, действующая на каждый из них вдоль поверхности, стала равной нулю. Это означает, что проекция напряженности поля на направление касательной к поверхности проводника в любой ее точке равна нулю. А это возможно только при условии, что силовые линии поля направлены перпендикулярно поверхности заряженного проводника (рис. 2).

Какова напряженность поля, созданного заряженной плоскостью?

На рисунке 3 изображен участок заряженной проводящей плоскости с площадью S, на который приходится заряд q.

Мы знаем, что силовые линии поля, созданного этой плоскостью, всюду перпендикулярны к ней. А чему равняется модуль напряженности электрического поля?

Окружим выбранный участок плоскости замкнутой поверхностью, через которую силовые линии проходят под прямым углом к ней. Для плоскости такой поверхностью служит, например, прямоугольный параллелепипед с основаниями, параллельными плоскости. Силовые линии поля перпендикулярны только этим основаниям, остальные четыре грани параллелепипеда параллельны силовым линиям. Площадь обоих оснований равна 2S.

Из теоремы Гаусса следует, что

Эта формула приведена в §45 «Физики 9» без вывода. Из формулы видно, что напряженность поля в любой его точке не зависит от расстояния до заряженной плоскости. Такое поле называют однородным.

Чему равна напряженность поля заряженного проводящего шара?

Поскольку шар проводящий, силовые линии поля всюду направлены перпендикулярно его поверхности, то есть по радиусам (рис. 4). Найдем модуль напряженности поля в любой точке М, находящейся на расстоянии R от центра шара. Проведем через эту точку замкнутую поверхность, ортогональную силовым линиям поля. Такой поверхностью служит сфера радиуса R и площадью 4πR 2 , концентрическая поверхности проводящего шара.

По теореме Гаусса (

заряженный шар создает вокруг себя такое же поле, как точечный заряд, помещенный в центре шара (см. рис. 4).

Ссылка на основную публикацию
Ключ для windows 7 максимальная сборка 7601
Если вы искали ключ для windows 7 максимальная (Ultimate), то вы попали по адресу, мы собрали для вас, массу ключей....
Какой ток на выходе usb
В современном мире гаджетов использование зарядных устройств в автомобиле — это необходимость. Т.к. гаджетов у меня много и в машине...
Какой телефон щас в моде
На Российском рынке представлено огромное количество смартфонов на любой вкус и цвет. Ассортимент настолько широк, что каждый любой пользователь гарантированно...
Ключ для повер поинт 365 лицензионный ключ
Microsoft Office 365 состоит не только из офисных программ Word, Excel, PowerPoint, OneNote, Publisher, Outlook, Access, OneDrive для бизнеса, Skype...
Adblock detector