Кодирование алфавита в двоичный код

Кодирование алфавита в двоичный код

Приносим извинения за неудобства, но Ваш IP-адрес входит в «серый список».

Возможно Вы используете анонимайзеры/прокси/VPN или другие подобные средства (TOR, friGate, ZenMate и т.п.).

Пожалуйста пройдите проверку ReCaptcha ниже для перехода на сайт.

We apologize for the inconvenience, but your IP address is «graylisted».

Probably you are using anonymizers/proxy/VPN or similar tools (TOR, friGate, ZenMate etc.).

Please use ReCaptcha check below to enter the website.

В этом случае двоичный код первичного алфавита строится цепочками равной длины, т.е. со всеми знаками связано одинаковое количество информации равное I ( А) = log2 N. Формировать признак конца знака не требуется, поэтому для определения длины кода можно воспользоваться формулой К(А,2) > log2 N. Приемное устройство просто отсчитывает оговоренное заранее количество элементарных сигналов и интерпретирует цепочку (устанавливает, какому знаку она соответствует), соотнося ее с таблицей кодов. Правда, при этом недопустимы сбои, например, пропуск (непрочтение) одного элементарного сигнала приведет к сдвигу всей кодовой последовательности и неправильной ее интерпретации; решается проблема путем синхронизации передачи или иными способами, о которых пойдет речь в гл. 5. С другой стороны, применение равномерного кода оказывается одним из средств контроля правильности передачи, поскольку факт поступления лишнего элементарного сигнала или, наоборот, поступление неполного кода сразу интерпретируется как ошибка.

Примером равномерного алфавитного кодирования является телеграфный код Бодо, пришедший на смену азбуке Морзе. Исходный алфавит должен содержать не более 32-х символов; тогда К(А,2) = log2 32 = 5, т.е. каждый знак первичного алфавита содержит 5 бит информации и кодируется цепочкой из 5 двоичных знаков. Условие N ≤ 32, очевидно, выполняется для языков, основанных на латинском алфавите (Т = 27 = 26 + «пробел»), однако в русском алфавите 34 буквы (с пробелом) — именно по этой причине пришлось «сжать» алфавит (как в коде Хаффмана) и объединить в один знак «е» и «ё», а также «ь» и «ъ», что видно из табл. 3.1. После такого сжатия N = 32, однако, не остается свободных кодов для знаков препинания, поэтому в телеграммах они отсутствуют или заменяются буквенными аббревиатурами; это не является заметным ограничением, поскольку, как указывалось выше, избыточность языка позволяет легко восстановить информационное содержание сообщения. Избыточность кода Бодо для русского языка Q(r,2) = 0,148, для английского Q(e,2) = 0,239.

Другим важным для нас примером использования равномерного алфавитного кодирования является представление символьной (знаковой) информации в компьютере. Чтобы определить длину кода, необходимо начать с установления количество знаков в первичном алфавите. Компьютерный алфавит должен включать:

· 26 х 2 = 52 букв латинского алфавита (с учетом прописных и строчных);

· 33 х 2 = 66 букв русского алфавита;

· цифры 0.. .9 — всего 10;

· знаки математических операций, знаки препинания, спецсимволы ≈ 20.

Получаем, что общее число символов N ≈ 148. Теперь можно оценить длину кодовой цепочки: К(с,2) ≥ log2148 ≥ 7,21. Поскольку длина кода выражается целым числом, очевидно, К(с,2) = 8. Именно такой способ кодирования принят в компьютерных системах: любому символу ставится в соответствие код из 8 двоичных разрядов (8 бит). Эта последовательность сохраняется и обрабатывается как единое целое (т.е. отсутствует доступ к отдельному биту) — по этой причине разрядность устройств компьютера, предназначенных для хранения или обработки информации, кратна 8. Совокупность восьми связанных бит получила название байт, а представление таким образом символов — байтовым кодированием.

Байт наряду с битом может использоваться как единица измерения количества информации в сообщении. Один байт соответствует количеству информации в одном знаке алфавита при их равновероятном распределении. Этот способ измерения количества информации называется также объемным. Пусть имеется некоторое сообщение (последовательность знаков); оценка количества содержащейся в нем информации согласно рассмотренному ранее вероятностному подходу (с помощью формулы Шеннона (2.17)) дает Iвер, а объемная мера пусть равна Iоб; соотношение между этими величинами вытекает из (2.7):

Именно байт принят в качестве единицы измерения количества информации в международной системе единиц СИ. 1 байт = 8 бит. Наряду с байтом для измерения количества информации используются более крупные производные единицы:

Использование 8-битных цепочек позволяет закодировать 2 8 =256 символов, что превышает оцененное выше N и, следовательно, дает возможность употребить оставшуюся часть кодовой таблицы для представления дополнительных символов.

Читайте также:  Как убрать запрос из поиска яндекс

Однако недостаточно только условиться об определенной длине кода. Ясно, что способов кодирования, т.е. вариантов сопоставления знакам первичного алфавита восьмибитных цепочек, очень много. По этой причине для совместимости технических устройств и обеспечения возможности обмена информацией между многими потребителями требуется согласование кодов. Подобное согласование осуществляется в форме стандартизации кодовых таблиц.

Первым таким международным стандартом, который применялся на больших вычислительных машинах, был EBCDIC (Extended Binary Coded Decimal Interchange Code) — «расширенная двоичная кодировка десятичного кода обмена». В персональных компьютерах и телекоммуникационных системах применяется международный байтовый код ASCII (American Standard Code for Information Interchange — «американский стандартный код обмена информацией»).

Он регламентирует коды первой половины кодовой таблицы (номера кодов от 0 до 127, т.е. первый бит всех кодов 0). В эту часть попадают коды прописных и строчных английских букв, цифры, знаки препинания и математических операций, а также некоторые управляющие коды (номера от 0 до 31), вырабатываемые при использовании клавиатуры. Ниже приведены некоторые ФSC-коды:

Вторая часть кодовой таблицы — она считается расширением основной — охватывает коды в интервале от 128 до 255 (первый бит всех кодов 1). Она используется для представления символов национальных алфавитов (например, русского), а также символов псевдографики. Для этой части также имеются стандарты, например, для символов русского языка это КОИ-8, КОИ-7 и др.

Как в основной таблице, так и в ее расширении коды букв и цифр соответствуют их лексикографическому порядку (т.е. порядку следования в алфавите) — это обеспечивает возможность автоматизации обработки текстов и ускоряет ее.

В настоящее время появился и находит все более широкое применение еще один международный стандарт кодировки —Unicode. Его особенность в том, что в нем использовано 16-битное кодирование, т.е. для представления каждого символа отводится 2 байта. Такая длина кода обеспечивает включения в первичный алфавит 65536 знаков. Это, в свою очередь, позволяет создать и использовать единую для всех распространенных алфавитов кодовую таблицу.

Обложка урока взята с источника.

Онлайн-курсы для школьников и родителей

План урока:

Примеры кодирования информации:

  • трансляция письменных сообщений с использованием русских букв (АБВГД…ЭЮЯ);
  • запись чисел цифрами (0123456789);
  • использование языка жестов при общении глухонемых людей

Другими словами, переход сообщения из одной формы ее в другую, согласно определенным правилам, и выражает в чем суть кодирования информации.

Информация проходит кодирование в целях:

  • упрощения сбора исходных данных;
  • сокращения объема занимаемой памяти информационными сообщениями;
  • удобства хранения материалов;
  • эффективной обработки и обмена информацией;
  • сокрытия необходимых сведений.

История кодирования информации насчитывает сотни веков. Издавна люди использовали криптограммы (зашифрованные сообщения).

В 19 веке с изобретением телеграфа С. Морзе был придуман и принципиально новый способ шифрования. Телеграфное сообщение передавалось по проводам последовательностью коротких и долгих сигналов (точка и тире).

Вслед за ним Ж. Бодо создал основополагающий в истории современной информатики метод бинарного кодирования информации, который заключается в применении всего двух различающихся электрических сигналов. Кодирование информации в компьютере также подразумевает использование двух чисел.

Разработанная в 1948г. К. Шенноном «Теория информации и кодирования» стала основополагающей в современном кодировании данных.

Кодирование информации в информатике, одна из базовых тем. Понимание для чего нужна процедура кодирования передаваемой информации, каким образом она осуществляется, поможет в изучении принципов работы компьютера.

Способы кодировки

Проанализируем разнообразные виды информации и особенности ее кодирования.

По принципу представления все информационные сведения можно классифицировать на следующие группы:

  • графическая;
  • аудиоинформация (звуковая);
  • символьная (текстовая);
  • числовая;
  • видеоинформация.

Способы кодирования информации обусловлены поставленными целями, а также имеющимися возможностями,методами ее дальнейшей обработки и сохранения. Одинаковые сообщения могут отображаться в виде картинок и условных знаков (графический способ), чисел (числовой способ) или символов (символьный способ).


Способы кодировки.

Соответственно происходит и классификация информации по способу кодирования:

  • символьные сообщения включают знаки дорожного движения, сигналы светофора и т.д.;
  • текстовые данные – это книги, нотные записи, различные документы;
  • всевозможные изображения (фотографии, схемы, рисунки) представляют все многообразие графической информации.

Чтобы расшифровать сообщение, отображаемое в выбранной системе кодирования информации, необходимо осуществить декодирование – процесс восстановления до исходного материала. Для успешного осуществления расшифровки необходимо знать вид кода и методы шифрования.

Читайте также:  Наложение текстуры на объект в фотошопе

Самыми распространенными видами кодировок информации являются следующие:

  • преобразование текста;
  • графическая кодировка;
  • кодирование числовых данных;
  • перевод звука в бинарную последовательность чисел;
  • видеокодирование.

Различают такие методы кодирования информации как:

  • метод замены (подстановки) – знаки первоначального сообщения заменяются на соответствующие символы выбранного кодового алгоритма;
  • метод перестановки – символы оригинального текста меняются местами по определенной схеме;
  • метод гаммирования – к исходным обозначениям добавляется случайная последовательность других знаков.

Двоичный код

Самый широко используемый метод кодирования информации – двоичное кодирование. Кодирование данных двоичным кодом применяется во всех современных технологиях.

Двоичный (бинарный) код — последовательность нолей и единиц. Это универсальный способ отображения любых информационных сведений (текстовых сообщений, картинок, звуковых и видеоматериалов). Сведения, закодированные в бинарном коде, очень удобно хранить, обрабатывать и передавать с одного электронного устройства на другое, в чем и заключается преимущества использования двоичного кодирования информации.

Двоичное кодирование информации применяется для различных данных:

  • двоичное кодирование текстовой информации заключается в присвоении буквенным, цифровым и другим обозначениям определенного кода. Он записывается в компьютерной памяти цепочкой из нулей и единиц. Порядок кодирования алфавита в двоичный код с помощью стандарта ASCII является наглядным примером;
  • вид используемой графики влияет на то, каким образом производится двоичное кодирование графической информации;
  • двоичное кодирование звуковой информации происходит после дискретизации звуковой волны и присвоения каждому компоненту соответствующего бинарной цепочки чисел;
  • кодирование двоичным кодом видеоматериалов сочетает принципы работы со звуком и растровыми изображениями.

Обработка графических изображений

Кодирование текстовой, звуковой и графической информации осуществляется в целях ее качественного обмена, редактирования и хранения. Кодировка информационных сообщений различного типа обладает своими отличительными чертами, но, в целом, она сводится к преобразованию их в двоичном виде.

Рисунки, иллюстрации в книгах, схемы, чертежи и т.п. – примеры графических сообщений. Современные люди для работы с графическими данными все чаще применяют компьютерные технологии.

Суть кодирования графической и звуковой информации заключается в преобразовании ее из аналогового вида в цифровой.

Кодирование графической информации – это процедура присвоения каждому компоненту изображения определенного кодового значения.

Способы кодирования графической информации подчиняются методам представления изображений (растрового или векторного):

  1. Принцип кодирования графической информации растровым способом заключается в присвоении бинарного шифра пикселям (точкам), формирующим изображение. Код содержит сведения о цветовых оттенках каждой точки. Примером служат снимки, сделанные на цифровом фотоаппарате.
  1. Векторная кодировка осуществляется благодаря использованию математических функций. Компонентам векторных изображений (точкам, прямым и другим геометрическим фигурам) присваивается двоичная последовательность, определяющая разнообразные параметры. Такая графика зачастую применяется в типографии.

Многим станет интересно: «В чем суть кодирования графической информации, представленной в виде 3D-изображений?» Дело в том, что работа с трехмерными данными сочетает способы растровой и векторной кодировки.

Кодирование и обработка графической информации различного формата имеет как свои преимущества, так и недостатки.

Метод координат

Любые данные можно передать с помощью двоичных чисел, в том числе и графические изображение, представляющие собой совокупность точек. Чтобы установить соответствие чисел и точек в бинарном коде, используют метод координат.

Метод координат на плоскости основан на изучении свойств точки в системе координат с горизонтальной осью Ox и вертикальной осью Oy. Точка будет иметь 2 координаты.

Если через начало координат проходит 3 взаимно перпендикулярные оси X, Y и Z, то используется метод координат в пространстве. Положение точки в таком случае определяется тремя координатами.


Система координат в пространстве

Перевод чисел в бинарный код

Числовой способ кодирования информации, т.е. переход информационных данных в бинарную последовательность чисел широко распространен в современной компьютерной технике. Любая числовую, символьную, графическую, аудио- и видеоинформацию можно закодировать двоичными числами. Рассмотрим подробнее кодирование числовой информации.

Привычная человеку система счисления (основанная на цифрах от 0 до 9), которой мы активно пользуемся, появилась несколько сотен тысяч лет назад. Работа всей вычислительной техники организована на бинарной системе счисления. Алфавитом у нее минимальный – 0 и 1. Кодировка чисел совершается путем перехода из десятичной в двоичную систему счисления и выполнении вычислений непосредственно с бинарными числами.

Читайте также:  Иероглиф буква руна графика цифра что лишнее

Кодирование и обработка числовой информации обусловлено желаемым результатом работы с цифрами. Так, если число вводится в рамках текстового файла, то оно будет иметь код символа, взятого из используемого стандарта. Для математических вычислений числовые данные преобразуются совершенно другим способом.

Принципы кодирования числовой информации, представленной в виде целых или дробных чисел (положительных, отрицательных или равных 0) отличаются по своей сути. Самый простой способ перевести целое число из десятичной в двоичную систему счисления заключается в следующем:

  1. число нужно разделить на 2;
  2. если частное больше 1, то необходимо продолжить деление до того момента, пока результат будет равен 0 или 1;
  3. записать результат последней операции и остатки от деления в обратной последовательности;
  4. полученное число и будет являться искомым кодовым значением.

Одна из важнейших частей компьютерной работы – кодирование символьной информации. Все многообразие цифр, русских и латинских букв, знаков препинания, математических знаков и отдельных специальных обозначений относятся к символам. Cимвольный способ кодирования состоит в присвоении определенному знаку установленного шифра.

Рассмотрим подробнее самые распространенные стандарты ASCII и Unicode – то, что применяется для кодирования символьной информации во всем мире.


Источник Фрагмент таблицы ASCII

Первоначально было установлено, что для любого знака отводится в памяти компьютера 8 бит (1 бит – это либо «0», либо «1») бинарной последовательности. Первая таблица кодировки ASCII (переводится как «американский кодовый стандарт обмена сообщениями») содержала 256 символов. Ограниченная численность закодированных знаков, затрудняющая межнациональный обмен данными, привела к необходимости создания стандарта Unicode, основанного на ASCII. Эта международная система кодировки содержит 65536 символов. Закодировать огромное количество всевозможных обозначений стало возможным благодаря использованию 16-битного символьного кодирования.

Кодирование символьной и числовой информации принципиально отличается. Для ввода-вывода цифр на монитор или использовании их в текстовом файле происходит преобразование их согласно системе кодировки. В процессе арифметических действий число имеет совершенно другое бинарное значение, потому что оно переходит в двоичную систему счисления, где и совершаются все вычислительные действия.

Выбирать способ кодирования информации – графический, числовой или символьный необходимо отталкиваясь от цели кодировки. Например, число «21» можно ввести в компьютерную память цифрами или буквами «двадцать один», слово «ЗИМА» можно передать русскими буквами «зима» или латинскими «ZIMA», штрих-код товара передается изображением и цифрами.

Преобразование звука

Компьютерные технологии успешно внедряются в различные сферы деятельности, включая кодирование и обработку звуковой информации. С физической точки зрения, звук – это аналоговый сплошной сигнал. Процесс его перевода в ряд электрических импульсов называется кодированием звуковой информации.

Задачи, которые необходимо решить для успешной оцифровки сигнала:

  1. дискретизировать (разделить аудиоданные на элементарные участки путем измерения колебаний воздуха через одинаковые интервалы времени);
  2. оцифровать (присвоить каждому элементу числовой код).


Источник Преобразование звука: а) аналоговый сигнал; б)дискретный сигнал.

Различают следующие методы кодирования звуковой информации:

  • Метод FM. Суть его сводится к разделению звука аналого-цифровыми преобразователями (АЦП) на одинаковые простейшие элементы, которые в дальнейшем кодируются бинарным кодом. Несовершенство метода FM проявляется в низком качестве звукозаписи из-за потери некоторого объема исходного звукового сообщения.
  • Метод Wave-Table (таблично-волновой) позволяет получить высококачественный продукт, поскольку разработанные таблицы сэмплов (образцов «живых» звуков) позволяют выразить бинарными числами разнообразные параметры поступающего сигнала.

Обработка текста

Текст – осмысленный порядок знаков. С использованием компьютера кодирование и обработка текстовой информации (набор, редактирование, обмен и сохранение письменного текста) значительно упростилось.

Кодирование текстовой информации – присвоение любому символу текста кода из кодировочной системы. Различают следующие стандарты кодировки:

  1. ASCII – первая международная система кодировки, содержащая коды на 256 знаков.
  2. Unicode – расширенный стандарт ASCII, превышающий ее размером в 256 раз.
  3. КОИ-8, СР1251, СР866, ISO – русские таблицы кодировки букв. При этом следует понимать, что документ, закодированный одним стандартом, не будет читаться в другом.

В задачах на кодирование текстовой информации часто встречаются следующие понятия:

  • мощность алфавита;
  • единицы измерения памяти (биты и байты).

Например, мощность алфавита ASCII составляет 256 символов. При этом один знак занимает 8 бит (или 1 байт) памяти, а Unicode – 35536 символов и 16 бит (или 2 байта) соответственно.

Ссылка на основную публикацию
Ключ для windows 7 максимальная сборка 7601
Если вы искали ключ для windows 7 максимальная (Ultimate), то вы попали по адресу, мы собрали для вас, массу ключей....
Какой ток на выходе usb
В современном мире гаджетов использование зарядных устройств в автомобиле — это необходимость. Т.к. гаджетов у меня много и в машине...
Какой телефон щас в моде
На Российском рынке представлено огромное количество смартфонов на любой вкус и цвет. Ассортимент настолько широк, что каждый любой пользователь гарантированно...
Ключ для повер поинт 365 лицензионный ключ
Microsoft Office 365 состоит не только из офисных программ Word, Excel, PowerPoint, OneNote, Publisher, Outlook, Access, OneDrive для бизнеса, Skype...
Adblock detector