Функция x целая часть x информатика

Функция x целая часть x информатика

Функция [x] (целая часть x)

Функция [x] равна наибольшему целому числу не превосходящему x(x-любое действительное число). Например:

Функция имеет «точки разрыва»: при целых значениях

х она «изменяется скачком».

На рис.2 дан график этой функции, при чём левый конец

Рис. 2 каждого из горизонтальных отрезков принадлежит графику ( жирные точки), а правый – не принадлежит.

Попробуй доказать, что если каноническое разложение числа n! Есть

n!=p , то a=

Аналогичные формулы имеют место для

Зная это, легко определить, например, сколькими нулями оканчивается число 100! Действительно, пусть 100!= Тогда

a=

и

Следовательно, 100! Делится на , т. е. оканчивается двадцатью четырьмя нулями.

Целой частью действительного числа x (x∈R) называется наибольшее целое число, не превосходящее x.

Целую часть числа x обозначают символом [x].

[x] читают «антье от x».

Обозначение [x] в 1808 году ввёл К. Гаусс.

В частности, если n — целое число (n∈Z), то [n]=n.

Вычислить целую часть числа:

7,8; 0,12; -0,7; -4,92; 15 2/3; 5/7; -3/11; 8; -50.

Фактически вычисление целой части числа x представляет собой округление до ближайшего к числу x целого числа в меньшую сторону (то есть округление с недостатком).

Функцию, ставящую в соответствие каждому значению x его целую часть — число [x], называют целой частью числа x и обозначают y=[x] .

Функция целая часть числа определена для любого действительного x (x∈R).

Область значений функции y=[x] — множество целых чисел (y∈Z).

По определению целой части числа

18,4

Таким образом, x∈[-9;-6) и

На промежутке [-9;-6) [x] принимает три значения.

Подставив в равенство (*) [x]= -9, найдём x:

Так как -9∈[-9;-8), то x= -9 — корень уравнения.

2. При x∈[-8;-7) [x]= -8, откуда

-7,5∈[-8;-7), поэтому x= -7,5 — корень уравнения.

Читайте также:  Как подключиться к базе данных oracle

3. При x∈[-7;-6) [x]= -7, и

-6∉[-7;-6), значит x= -6 не является корнем уравнения.

Функция [x] равна наибольшему целому числу, превосходящемуx (x – любое действительное число). Например:

Функция [x] имеет «точки разрыва»: при целых значениях x она «изменяется скачком».

На рис.2 дан график этой функции, причем левый конец каждого из горизонтальных отрезков принадлежит графику (жирные точки), а правый – не принадлежит.

Попробуйте доказать, что если каноническое разложение числа n! есть , то

Аналогичные формулы имеют место для

Зная это, легко определить, например, сколькими нулями оканчивается число 100! Действительно, пусть . Тогда

и .

Следовательно, 100! Делится на , т.е. оканчивается двадцатью четырьмя нулями.

Фигуры из кусочков квадрата

К числу полезных и увлекательных развлечений относится составление фигур из семи кусочков квадрата, разрезанного в соответствии с рис.3, (а), причем при составлении заданных фигур должны быть использованы все семь кусочков, и они должны налегать, даже частично, друг на друга.

На рис. 4 приведены симметричные фигуры 1 . Попробуйте сложить эти фигуры из частей квадрата, изображенного на рис. 3, (а).

Из этих же чертежей можно складывать и многие другие фигуры (например, изображения различных предметов, животных и т.п.).

Менее распространенным вариантом игры является составление фигур из кусочков квадрата, изображенного на рис. 3, (b).

Магические квадраты

Магические квадрат «n 2 -квадратом» назовем квадрат, разделенный на n 2 клеток, заполненных первыми n 2 натуральными числами так, что суммы чисел, стоящих в любом горизонтальном или вертикальном ряду, а также на любой из диагоналей квадрата, равны одному и тому же числу

Если одинаковы лишь суммы чисел, стоящих в любом горизонтальном и вертикальном ряду, то квадрат называется полумагическим.

Магический 4 2 –квадрат назван именем Дюрера, математика и художника XVIвека, изображавшего квадрат на известной картине «Меланхолия».

Читайте также:  Мое отношение к раскольникову кратко

Кстати, два нижних средних числа этого квадрата образуют число 1514-дату создания картины.

Существует лишь восемь девятиклеточных магических квадратов. Два из них, являющиеся зеркальным изображением друг друга, приведены на рисунке; остальные шесть могут быть получены из этих квадратов вращение их вокруг центра на 90°, 180°, 270°

2. Нетрудно полностью исследовать вопрос о магических квадратов при n=3

Действительно,S3 = 15 , и существует лишь восемь способов представления числа 15 в виде суммы различных чисел (от единицы до девяти):

Заметим, что каждое из чисел 1, 3, 7, 9 входит в две, а каждое из чисел 2, 4, 6, 8 – в три указанные суммы и лишь число 5 входит в четыре суммы. С другой стороны, из восьми трехклеточных рядов: трех горизонтальных, трех вертикальных и двух диагональных – через каждую из угловых клеток квадрата проходит по три, через центральную клетку по четыре и через каждую из остальных клеток по два ряда. Следовательно, число 5 должно обязательно стоять в центральной клетке, числа 2, 4, 6, 8 – в угловых клетках, а числа 1, 3, 7, 9 – в остальных клетках квадрата.

Ссылка на основную публикацию
Форд экоспорт белый фото
Компания Форд славится тем, что каждое обновление их машин несет в себе кучу перемен. Не стал исключением и недорогой городской...
Установка и настройка ip камеры
Системы видеонаблюдения используются давно. Старые аналоговые решения были дороги и громоздки. Они требовали большого количества дорогостоящего оборудования, квалифицированных специалистов и...
Установка и настройка операционной системы windows
Наши услуги УСТАНОВКА ОПЕРАЦИОННЫХ СИСТЕМ Определения: Операционная система (сокращенно ОС) – комплекс взаимосвязанных программ, предназначенных для управления ресурсами компьютера и...
Форм факторы корпусов пк размеры
Главная FAQ Железо Типы компьютерных корпусов Типы компьютерных корпусов Говоря слово "компьютер" многие подразумевают системный блок компьютера, и в принципе...
Adblock detector