Циклические избыточные коды crc

Циклические избыточные коды crc

Циклический избыточный код (Cyclical Redundancy Check — CRC) имеет фиксированную длину и используется для обнаружения ошибок. Наибольшее распространения получили коды CRC-16 и CRC-32, имеющие длину 16 и 32 бита соответственно. Код CRC строится по исходному сообщению произвольной длины, т.е. этот код не является блочным в строгом смысле этого слова. Но при каждом конкретном применении этот код — блочный, (m, m + 16)-код для CRC-16 или (m, m + 32)-код для CRC-32.

Вычисление значения кода CRC происходит посредством деления многочлена, соответствующего исходному сообщению (полином-сообщение), на фиксированный многочлен (полином-генератор). Остаток от такого деления и есть код CRC, соответствующий исходному сообщению. Для кода CRC-16 полином-генератор имеет степень 16, а для CRC-32 — 32. Полиномы-генераторы подбираются специальным образом и для кодов CRC-16/32 стандартизированы Международным консультативным комитетом по телеграфной и телефонной связи (CCITT). Для CRC-16, например, стандартным является полином-генератор

Пример построения CRC-4 кода для сообщения 11010111, используя полином-генераторИсходному сообщению соответствует полином
x 7 + x 6 + x 4 + x 2 + x +1, т. е. нумерация битов здесь начинается справа.

Полиному х 2 + 1 соответствуют биты 0101 — это и есть CRC-4 код.

Существуют быстрые алгоритмы для расчета CRC-кодов, использующие специальные таблицы, а не деление многочленов с остатком.

CRC-коды способны обнаруживать одиночную ошибку в любой позиции и, кроме того, многочисленные комбинации кратных ошибок, расположенных близко друг от друга. При реальной передаче или хранении информации ошибки обычно группируются на некотором участке, а не распределяются равномерно по всей длине данных. Таким образом, хотя для идеального случая двоичного симметричного канала CRC-коды не имеют никаких теоретических преимуществ по сравнению, например, с простыми контрольными суммами, для реальных систем эти коды являются очень полезными.

Коды CRC используются очень широко: модемами, телекоммуникационными программами, программами архивации и проверки целостности данных и многими другими программными и аппаратными компонентами вычислительных систем.

| следующая лекция ==>
Понятие о кодах Боуза-Чоудхури-Хоккенгема | Понятие об измерении

Дата добавления: 2014-01-04 ; Просмотров: 1858 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Циклический избыточный код

Циклический избыточный код (англ. Cyclic redundancy check, CRC) — алгоритм нахождения контрольной суммы, предназначенный для проверки целостности данных. CRC является практическим приложением помехоустойчивого кодирования, основанном на определённых математических свойствах циклического кода.

Понятие циклические коды достаточно широкое. В англоязычной литературе CRC расшифровывается двояко в зависимости от контекста: Cyclic Redundancy Code или Cyclic Redundancy Check. Под первой расшифровкой понимают математический феномен циклических кодов, под второй — конкретное применение этого феномена как хэш-функции.

Первые попытки создания кодов с избыточной информацией начались задолго до появления современных компьютеров. К примеру, ещё в 1960-х годахРидом и Соломоном была разработана эффективная методика кодирования — Код Рида-Соломона. Использование её в те времена не представлялось возможным, так как произвести операцию декодирования за разумное время первыми алгоритмами не удавалось. Точку в этом вопросе поставила фундаментальная работа Берлекампа, опубликованная в 1968 году. Эта методика, на практическое применение которой указал через год Мэсси, и по сей день используется в цифровых устройствах, обеспечивающих приём RS-кодированных данных. Более того: данная система позволяет не только определять позиции, но и исправлять неверные кодовые символы (чаще всего октеты).

Но далеко не всегда от кода требуется коррекция ошибок. Многие современные каналы связи обладают приемлемыми характеристиками, и зачастую достаточно лишь проверить, успешно ли прошла передача или возникли какие-нибудь сложности; структура же ошибок и конкретные позиции неверных символов совершенно не интересуют принимающую сторону. И в этих условиях очень удачным решением оказались алгоритмы, использующие контрольные суммы. CRC как нельзя лучше подходит для подобных задач: невысокие затраты ресурсов, простота реализации и уже сформированный математический аппарат из теории линейных циклических кодов обеспечили ей огромную популярность.

В общем виде контрольная сумма представляет собой некоторое значение, вычисленное по определённой схеме на основе кодируемого сообщения. Проверочная информация при систематическом кодировании приписывается к передаваемым данным. На принимающей стороне абонент знает алгоритм вычисления контрольной суммы: соответственно, программа имеет возможность проверить корректность принятых данных.

Читайте также:  Блок управления экономайзером ваз 2107

При передаче пакетов по сетевому каналу могут возникнуть искажения исходной информации вследствие разных внешних воздействий: электрических наводок, плохих погодных условий и многих других. Сущность методики в том, что при хороших характеристиках контрольной суммы в подавляющем числе случаев ошибка в сообщении приведёт к изменению его контрольной суммы. Если исходная и вычисленная суммы не равны между собой, принимается решение о недостоверности принятых данных, и можно запросить повторную передачу пакета.

Алгоритм CRC базируется на свойствах деления с остатком двоичных многочленов, то есть многочленов над конечным полем . Значение CRC является по сути остатком от деления многочлена, соответствующего входным данным, на некий фиксированный порождающий многочлен.

Каждой конечной последовательности битов взаимно однозначно сопоставляется двоичный полином , последовательность коэффициентов которого представляет собой исходную последовательность. Например, последовательность битов 1011010 соответствует многочлену:

Количество различных многочленов степени меньшей равно , что совпадает с числом всех двоичных последовательностей длины .

Значение контрольной суммы в алгоритме с порождающим многочленом G(x) степени N определяется как битовая последовательность длины N, представляющая многочлен R(x), получившийся в остатке при делении многочлена P(x), представляющего входной поток бит, на многочлен G(x):

— многочлен, представляющий значение CRC;

— многочлен, коэффициенты которого представляют входные данные;

— порождающий многочлен;

— степень порождающего многочлена.

Умножение осуществляется приписыванием нулевых битов к входной последовательности, что улучшает качество хеширования для коротких входных последовательностей.

При делении с остатком исходного многочлена на порождающий полином G(x) степени N можно получить 2 N различных остатков от деления. G(x) зачастую является неприводимым многочленом. Обычно его подбирают в соответствии с требованиями к хэш-функции в контексте каждого конкретного применения. Тем не менее, существует множество стандартизированных образующих многочленов, обладающих хорошими математическими и корреляционными свойствами (минимальное число коллизий, простота вычисления), некоторые из которых перечислены ниже.

Схема формирования контрольной суммы CRC-8. Порождающий многочлен g(x) = x8+x5+x4+1

Одним из основных параметров CRC является порождающий полином.

С порождающим полиномом связан другой параметр — его степень, которая определяет количество битов, используемых для вычисления значения CRC. На практике наиболее распространены 8-ми, 16-ти и 32-х битовые слова, что является следствием особенностей архитектуры современной вычислительной техники.

Ещё одним параметром является начальное (стартовое) значение слова. Указанные параметры полностью определяют «традиционный» алгоритм вычисления CRC. Существуют также модификации алгоритма, например, использующие обратный порядок обработки битов.

Понятие циклические коды достаточно широкое [3] . В англоязычной литературе CRC расшифровывается двояко в зависимости от контекста: Cyclic Redundancy Code или Cyclic Redundancy Check [4] . Под первой расшифровкой понимают математический феномен циклических кодов, под второй — конкретное применение этого феномена как хэш-функции.

Помехоустойчивое кодирование

Первые попытки создания кодов с избыточной информацией начались задолго до появление современных ПК. К примеру, ещё в шестидесятых годах прошлого века Ридом и Соломоном была разработана эффективная методика кодирования — Код Рида-Соломона. Использование её в те времена не представлялось возможным, так как произвести операцию декодирования за разумное время первыми алгоритмами не удавалось. Точку в этом вопросе поставила фундаментальная работа Берлекампа, опубликованная в 1968 году. Эта методика, на практическое применение которой указал через год Мэсси, и по сей день используется в цифровых устройствах, обеспечивающих прием RS-кодированных данных. Более того: данная система позволяет не только определять позиции, но и исправлять неверные кодовые символы (чаще всего октеты).

Но далеко не везде от кода требуется коррекция ошибок. Многие современные каналы связи обладают приемлемыми характеристиками, и зачастую достаточно лишь проверить, успешно ли прошла передача или возникли какие-нибудь сложности; структура же ошибок и конкретные позиции неверных символов совершенно не интересуют принимающую сторону. И в этих условиях очень удачным решением оказались алгоритмы, использующие контрольные суммы. CRC как нельзя лучше подходит для подобных задач: невысокие затраты ресурсов, простота реализации и уже сформированный математический аппарат из теории линейных циклических кодов обеспечили ей огромную популярность.

Контрольная сумма

В самом общем своем виде контрольная сумма представляет собой некоторое значение, построенное по определенной схеме на основе кодируемого сообщения. Проверочная информация при систематическом кодировании дописывается в конец сообщения — после полезных данных. На принимающей стороне абонент знает алгоритм вычисления контрольной суммы: соответственно, программа имеет возможность проверить корректность принятых данных.

Читайте также:  Код домофона eltis vizit

При передаче пакетов по реальному каналу, разумеется, могут возникнуть искажения исходной информации вследствие разных внешних воздействий: электрических наводок, плохих погодных условий и многих других. Сущность методики в том, что при хороших характеристиках хэш-функции в подавляющем числе случаев ошибка в сообщении приведет к изменению вычисленного на приеме значения CRC. Если исходная и вычисленная суммы не равны между собой, принимается решение о недостоверности принятых данных, и можно запросить повторную передачу пакета.

Математическое описание

Алгоритм CRC базируется на свойствах деления с остатком двоичных многочленов, то есть многочленов над конечным полем . Значение CRC является по сути остатком от деления многочлена, соответствующего входным данным, на некий фиксированный порождающий многочлен.

Каждой конечной последовательности битов взаимно однозначно сопоставляется двоичный полином , последовательность коэффициентов которого представляет собой исходную последовательность. Например, последовательность битов 1011010 соответствует многочлену:

Количество различных многочленов степени меньшей равно , что совпадает с числом всех двоичных последовательностей длины .

Значение контрольной суммы в алгоритме с порождающим многочленом G(x) степени N определяется как битовая последовательность длины N, представляющая многочлен R(x), получившийся в остатке при делении многочлена P(x), представляющего входной поток бит, на многочлен G(x):

— многочлен, представляющий значение CRC. — многочлен, коэффициенты которого представляют входные данные. — порождающий многочлен. — степень порождающего многочлена.

Умножение осуществляется приписыванием нулевых битов к входной последовательности, что улучшает качество хеширования для коротких входных последовательностей.

При делении с остатком исходного многочлена на порождающий полином G(x) степени N можно получить 2 N различных остатков от деления. G(x) всегда является неприводимым многочленом. Обычно его подбирают в соответствии с требованиями к хэш-функции в контексте каждого конкретного применения.

Тем не менее, существует множество стандартизированных образующих многочленов, обладающих хорошими математическими и корреляционными свойствами (минимальное число коллизий, простота вычисления). В статье приведены некоторые из них, а также соответствующие реализации на языке Си.

Вычисление CRC

Параметры алгоритма

Говоря о формировании контрольной суммы CRC, в первую очередь нужно упомянуть о полиноме-генераторе. Существует огромное множество многочленов, участвующих в формировании cyclic reduntancy code; многие из них указаны в конце статьи.

Другим параметром конкретного алгоритма вычисления контрольной суммы является размер слова, или суммарное количество регистров — информационных ячеек, используемых для вычисления численного значения хэша. При этом обязательно учитывается то, что размер слова и степень образующего контрольную сумму полинома совпадают. На практике более всего распространены 8, 16 и 32 — битовые слова, что является следствием особенностей архитектуры современной вычислительной техники.

И последний параметр, важный при описании определенной методики — начальные состояния регистров (стартовое слово). Это последняя из трех значимых характеристик; зная их в совокупности, мы можем восстановить алгоритм вычисления CRC, если данная модификация методики не имеет специфических особенностей, таких, как обратный порядок обработки битов.

Описание процедуры

Из файла берется первое слово — это может быть битовый (CRC-1), байтовый (CRC-8) или любой другой элемент. Если старший бит в слове «1», то слово сдвигается влево на один разряд с последующим выполнением операции XOR. Соответственно, если старший бит в слове «0», то после сдвига операция XOR не выполняется. После сдвига теряется старый старший бит, а младший бит освобождается — его значение устанавливается равным нулю. На место младшего бита загружается очередной бит из файла, и операция повторяется до тех пор, пока не загрузится последний бит файла. После прохождения всего файла, в слове остается остаток, который и является контрольной суммой.

Наиболее используемые и стандартизованные полиномы

В то время, как циклические избыточные коды являются частью стандартов, у этого термина не существует общепринятого определения — трактовки различных авторов нередко противоречат друг другу. [1] [5]

Этот парадокс касается и выбора многочлена-генератора: зачастую стандартизованные полиномы не являются самыми эффективными в плане статистических свойств соответствующего им check reduntancy code .

При этом многие широко используемые полиномы не являются наиболее эффективными из всех возможных. В 1993—2004 годах группа ученых занималась исследованием порождающих многочленов разрядности до 16, [1] 24 и 32 бит, [6] [7] и нашла полиномы, дающие лучшую, нежели стандартизированные многочлены, производительность в смысле кодового расстояния. [7] Один из результатов этого исследования уже нашёл своё применение в протоколе iSCSI.

Читайте также:  Пройти тест по программированию

Самый популярный и рекомендуемый IEEE полином для CRC-32 используется в Ethernet, FDDI; также этот многочлен является генератором кода Хемминга [8] . Использование другого полинома — CRC-32C — позволяет достичь такой же производительности при длине исходного сообщения от 58 бит до 131 кбит, а в некоторых диапазонах длины входного сообщения может быть даже выше — поэтому в наши дни он тоже пользуется популярностью. [7] К примеру, стандарт ITU-T G.hn использует CRC-32C с целью обнаружения ошибок в полезной нагрузке.

Ниже в таблице перечислены наиболее распространенные многочлены — генераторы CRC.На практике вычисление CRC может включать пре- и пост-инверсию, а также обратный порядок обработки битов. В проприетарных реализациях CRC для усложнения анализа кода применяют ненулевые начальные значения регистров.

Название Полином Представления: [9] нормальное / реверсированное / реверсированное от обратного
CRC-1 (используется в аппаратном контроле ошибок; также известен как бит чётности) 0x1 / 0x1 / 0x1
CRC-4-ITU (ITU G.704 [10] ) 0x3 / 0xC / 0x9
CRC-5-EPC (Gen 2 RFID [11] ) 0x09 / 0x12 / 0x14
CRC-5-ITU (ITU G.704 [12] ) 0x15 / 0x15 / 0x1A
CRC-5-USB (USB token packets) 0x05 / 0x14 / 0x12
CRC-6-ITU (ITU G.704 [13] ) 0x03 / 0x30 / 0x21
CRC-7 (системы телекоммуникации, ITU-T G.707 [14] , ITU-T G.832 [15] , MMC, SD) 0x09 / 0x48 / 0x44
CRC-8-CCITT (ATM HEC), ISDN Header Error Control and Cell Delineation ITU-T I.432.1 (02/99) 0x07 / 0xE0 / 0x83
CRC-8-Dallas/Maxim (1-Wire bus) 0x31 / 0x8C / 0x98
CRC-8 (ETSI EN 302 307 [16] , 5.1.4) 0xD5 / 0xAB / 0xEA [1]
CRC-8-SAE J1850 0x1D / 0xB8 / 0x8E
CRC-10 0x233 / 0x331 / 0x319
CRC-11 (FlexRay [17] ) 0x385 / 0x50E / 0x5C2
CRC-12 (системы телекоммуникации [18] [19] ) 0x80F / 0xF01 / 0xC07
CRC-15-CAN 0x4599 / 0x4CD1 / 0x62CC
CRC-16-IBM (Bisync, Modbus, USB, ANSI X3.28 [20] , многие другие; также известен как CRC-16 и CRC-16-ANSI) 0x8005 / 0xA001 / 0xC002
CRC-16-CCITT (X.25, HDLC, XMODEM, Bluetooth, SD и др.) 0x1021 / 0x8408 / 0x8810 [1]
CRC-16-T10-DIF (SCSI DIF) 0x8BB7 [21] / 0xEDD1 / 0xC5DB
CRC-16-DNP (DNP, IEC 870, M-Bus) 0x3D65 / 0xA6BC / 0x9EB2
CRC-16-Fletcher Not a CRC; see Fletcher’s checksum Used in Adler-32 A & B CRCs
CRC-24 (FlexRay [17] ) 0x5D6DCB / 0xD3B6BA / 0xAEB6E5
CRC-24-Radix-64 (OpenPGP) 0x864CFB / 0xDF3261 / 0xC3267D
CRC-30 (CDMA) 0x2030B9C7 / 0x38E74301 / 0x30185CE3
CRC-32-Adler Not a CRC; see Adler-32 See Adler-32
CRC-32-IEEE 802.3 (V.42, MPEG-2, PNG [22] , POSIX cksum) 0x04C11DB7 / 0xEDB88320 / 0x82608EDB [7]
CRC-32C (Castagnoli) (iSCSI, G.hn payload) 0x1EDC6F41 / 0x82F63B78 / 0x8F6E37A0 [7]
CRC-32K (Koopman) 0x741B8CD7 / 0xEB31D82E / 0xBA0DC66B [7]
CRC-32Q (aviation; AIXM [23] ) 0x814141AB / 0xD5828281 / 0xC0A0A0D5
CRC-64-ISO (HDLC — ISO 3309) 0x000000000000001B / 0xD800000000000000 / 0x800000000000000D
CRC-64-ECMA-182 [24] 0x42F0E1EBA9EA3693 / 0xC96C5795D7870F42 / 0xA17870F5D4F51B49

Существующие стандарты CRC-128 (IEEE) и CRC-256 (IEEE) в настоящее время вытеснены криптографическими хеш-функциями.

Попытки описания алгоритмов CRC

Одной из самых известных является методика Ross N. Williams [25] . В ней используются следующие параметры:

  • Название алгоритма (name);
  • Степень порождающего контрольную сумму многочлена(width);
  • Сам производящий полином (poly). Для того, чтобы записать его в виде значения, его сначала записывают как битовую последовательность, при этом старший бит опускается — он всегда равен 1. К примеру, многочлен в данной нотации будет записан числом . Для удобства полученное двоичное представление записывают в шестнадцатеричной форме. Для нашего случая оно будет равно или 0x11;
  • Стартовые данные (init), то есть значения регистров на момент начала вычислений;
  • Флаг (RefIn), указывающий на начало и направление вычислений. Существует два варианта: начиная со старшего значащего бита (MSB-first), или с младшего (LSB-first);
  • Флаг (RefOut), определяющий, инвертируется ли данные регистра при входе на элемент XOR;
  • Число (XorOut), с которым складывается по модулю 2 полученный результат;
  • Значение CRC (check) для строки «123456789» .

Примеры спецификаций некоторых алгоритмов CRC

Примеры программ для вычисления CRC на языке C

Некоторые из этих алгоритмов заимствованы у Ross Williams [26] .

Ссылка на основную публикацию
Футбольный менеджер без интернета
Да, уже четыре года назад Испания выиграла Евро 2012. С того времени много воды утекло и теперь у других команд...
Форд экоспорт белый фото
Компания Форд славится тем, что каждое обновление их машин несет в себе кучу перемен. Не стал исключением и недорогой городской...
Форм факторы корпусов пк размеры
Главная FAQ Железо Типы компьютерных корпусов Типы компьютерных корпусов Говоря слово "компьютер" многие подразумевают системный блок компьютера, и в принципе...
Футбольный менеджер с реальными командами
Бесплатная онлайн игра. Только в нашем футбольном менеджере игры проходят в реальном времени и можно менять тактику непосредственно во время...
Adblock detector