Что такое crossfire на материнской плате

Что такое crossfire на материнской плате

AMD CrossFireX (рус. перекрёстный огонь ) — технология, позволяющая одновременно использовать мощности двух и более (до четырех графических процессоров одновременно) видеокарт Radeon для построения трёхмерного изображения.

Каждая из видеокарт, используя определённый алгоритм, формирует свою часть изображения, которая передаётся в чип Composing Engine мастер-карты, имеющий собственную буферную память. Этот чип объединяет изображения каждой видеокарты и выводит финальный кадр.

В 2006 году система CrossFire формировалась путём соединения видеокарт Y-образным кабелем с задней стороны карт. В настоящее время (современные видеокарты на 2017 год , например, RX 480 уже не используют гибкие мостики и работают в режиме Crossfire без них) система уже использует специальные гибкие мостики (наподобие SLI, но имеющие свой собственный алгоритм и логику и официально называется CrossFireX.)

Технология была анонсирована на международной выставке Computex 2005 на Тайване.

Комбинации некоторых видеокарт могут оказаться гораздо более эффективными, производительными и выгодными финансово, чем одна более мощная и, соответственно, значительно более дорогая карта. Но, как и в случае с NVIDIA SLI, прирост производительности от использования двух видеокарт в системе будет наблюдаться только в приложениях, умеющих использовать 2 и более GPU. В старых играх, не умеющих работать с Multi-GPU системами, общая производительность графической составляющей останется прежней, в некоторых случаях может вообще даже снизиться; так что для любителей старых, но требовательных игр, самым верным решением будет покупка одной очень мощной видеокарты, чем покупка второй такой же и последующее объединение в CrossFireX-систему. Существенный недостаток CrossFire — данная технология не работает при запуске приложения в оконном режиме.

Содержание

Принципы построения [ править | править код ]

Для построения на компьютере CrossFireX-системы необходимо иметь:

  1. материнскую плату с двумя или более разъёмами PCI Express x16 (для версий R9-285, R9-290 или R9-290X ещё и с чипсетом AMD или Intel определённой модели, поддерживающей CrossFireX);
  2. мощный блок питания, как правило, мощностью от 700Вт;
  3. видеокарты с поддержкой CrossFireX;
  4. Специальный гибкий мостик CrossFireX для соединения видеокарт. (в старых версиях видеокарт, в более новых он не нужен, и не предусмотрен)

Видеокарты должны быть одной серии (за некоторыми исключениями), но не обязательно одной модели. При этом быстродействие и частота CrossFire-системы определяются характеристиками чипа наименее производительной видеокарты.

CrossFireX-систему можно организовать следующими способами:

  1. Внутреннее соединение — видеокарты объединяются с помощью специального гибкого мостика CrossFireX, при этом для соединения более, чем двух видеокарт не нужно использовать специализированные многоразъемные мостики (типа NVIDIA 3-way SLI или 4-way SLI), видеокарты соединяются последовательно простыми CrossFireX мостиками. Соединение ведется примерно так: от первой ко второй — от второй к третьей — от третьей к четвертой (для соединения 4 видеокарт); от первой ко второй — от второй к третьей (для 3 карт); от первой ко второй (для 2 карт). На однопроцессорных видеокартах по 2 разъема CrossFireX, поэтому в случае с системой из двух видеокарт объединять их можно как одним, так и двумя мостиками (от первой ко второй — от первой ко второй), разницы в производительности не будет.
  2. Программный метод — видеокарты не соединяются, обмен данными идёт по шине PCI Express x16, при этом их взаимодействие реализуется с помощью драйверов. Недостатком данного способа являются потери в производительности на 10-15 % по сравнению с вышеназванным способом. На данный момент практически полностью утерял актуальность, оставшись способом соединения низкопроизводительных видеокарт, для которых отсутствие соединительного мостика не является значимой потерей. Высокопроизводительные видеокарты можно объединить, только используя мостики, так как без них драйвер не поймёт, что такое объединение возможно.
  3. XDMA — обмен между видеокартами производится, как и в предыдущем случае, по шине PCI Express, но посредством специализированного аппаратного блока XDMA, имеющегося в GPU начиная с R9-285, R9-290 или R9-290X. Благодаря аппаратно-управляемому обмену данными достигается сокращение потерь производительности по сравнению с программно-управляемым обменом. Тем не менее, потери производительности могут возникать из-за особенностей построения системы PCI Express, например, при наличии между видеокартами нескольких мостов [1] .

Алгоритмы построения изображений [ править | править код ]

SuperTiling [ править | править код ]

Картинка разбивается на квадраты 32×32 пикселя и принимает вид шахматной доски. Каждый квадрат обрабатывается одной видеокартой.

Scissor [ править | править код ]

Изображение разбивается на несколько частей, количество которых соответствует количеству видеокарт в связке. Каждая часть изображения обрабатывается одной видеокартой полностью.

Аналог в nVidia SLI — алгоритм Split Frame Rendering

Alternate Frame Rendering [ править | править код ]

Обработка кадров происходит поочередно: одна видеокарта обрабатывает только чётные кадры, а вторая — только нечётные. Однако, у этого алгоритма есть недостаток. Дело в том, что один кадр может быть простым, а другой сложным для обработки.

Этот алгоритм, запатентованый ATI ещё во время выпуска двухчиповой видеокарты, используется также в nVidia SLI.

SuperAA [ править | править код ]

Данный алгоритм нацелен на повышение качества изображения. Одна и та же картинка генерируется на всех видеокартах с разными шаблонами сглаживания. Видеокарта производит сглаживание кадра с некоторым шагом относительно изображения другой видеокарты. Затем полученные изображения смешиваются и выводятся. Таким образом достигается максимальные чёткость и детализованность изображения. Доступны следующие режимы сглаживания: 8x, 10x, 12x и 14x.

Аналог в nVidia SLI — SLI AA.

Dual Graphics [ править | править код ]

Dual Graphics (ранее Hybrid CrossFireX) — уникальная способность APU линейки Fusion A-серии Llano значительно (по крайней мере в теории) увеличивать общую производительность видеоподсистемы, когда интегрированный GPU работает совместно с подключенной дискретной видеоплатой, дополняя её. Ещё более удивительной является способность Llano работать с GPU, которые быстрее или медленнее чем его собственное интегрированное видеоядро — для корректной работы Dual Graphics не требует идентичного GPU и при этом он не вредит более быстрому GPU, если его производительность ниже, как происходит в CrossFire. Фактически, он приводит в равновесие доступное аппаратное обеспечение для большей производительности (например, если дискретный GPU вдвое быстрее встроенного, драйвер берёт один кадр от APU на каждые два кадра от дискретной карты).

При всей соблазнительтности подобной асимметричной реализации CrossFire, есть серьёзные недостатки:
Во-первых, это работает только в приложениях, использующих DirectX 10 или 11. И если используется DirectX 9 или более ранний игровой движок, то производительность ухудшается до самой медленной из двух установленных графических карт (однако, согласно последним заявлениям AMD, при использовании DirectX ниже 10 версии программы должны обращаться к более быстрой из двух установленных графических карт).
Во-вторых, чтобы Dual Graphics работала, коэффициент графической производительности должен быть по крайней мере «два к одному», если видеокарта в три раза быстрее GPU Llano, то Dual Graphics работать не будет.

В OpenGL Dual Graphics не поддерживается и он всегда работает на GPU, управляющем основным выходом дисплея.

Для построения на компьютере CrossFireX-системы, необходимо иметь:

  1. материнскую плату с двумя и более разъёмами PCI Express x16 с чипсетомAMD или Intel определённой модели, поддерживающей CrossFireX;
  2. мощный блок питания;
  3. видеокарты с поддержкой CrossFireX.
  4. Специальный гибкий мостик CrossFireX для соединения видеокарт.

Видеокарты должны быть одной серии, но необязательно одной модели. При этом быстродействие и частота CrossFire-системы определяется характеристиками чипа наименее производительной видеокарты.

Читайте также:  Вычислить площадь поверхности конуса

CrossFireX-систему можно организовать двумя способами:

  1. Внутреннее соединение — видеокарты объединяются с помощью специального гибкого мостика CrossFireX, при этом, для соединения более, чем двух видеокарт, не нужно использовать специализированные многоразъемные мостики (типа NVIDIA 3-way SLI или 4-way SLI), видеокарты соединяются последовательно простыми CrossFireX мостиками. Соединение ведется примерно так: от первой ко второй — от второй к третьей — от третьей к четвертой (для соединения 4 видеокарт); от первой ко второй — от второй к третьей (для 3 карт); от первой ко второй (для 2 карт). Следует заметить, что на однопроцессорных видеокартах по 2 "пальца" CrossFireX, поэтому в случае с системой из двух видеокарт, объединять их можно как одним, так и двумя мостиками (от первой ко второй — от первой ко второй), разницы в производительности не будет.
  2. Программный метод — видеокарты не соединяются, обмен данными идёт по шине PCI Express x16, при этом их взаимодейтсвие реализуется с помощью драйверов. Недостатком данного способа являются потери в производительности на 10-15% по сравнению с вышеназванным способом.

Алгоритмы построения изображений

SuperTiling

Картинка разбивается на квадраты 32×32 пикселя и принимает вид шахматной доски. Каждый квадрат обрабатывается одной видеокартой.

Scissor

Изображение разбивается на несколько частей, количество которых соответствует количеству видеокарт в связке. Каждая часть изображения обрабатывается одной видеокартой полностью, включая геометрическую и пиксельную составляющие.

Аналог в nVidia SLI — алгоритм Split Frame Rendering

Alternate Frame Rendering

Обработка кадров происходит поочередно: одна видеокарта обрабатывает только чётные кадры, а вторая — только нечётные. Однако, у этого алгорима есть недостаток. Дело в том, что один кадр может быть простым, а другой сложным для обработки.

Этот алогоритм, запатентованый ATI ещё во время выпуска двухчиповой видеокарты, используется также в nVidia SLI.

SuperAA

Данный алгоритм нацелен на повышение качества изображения. Одна и та же картинка генерируется на всех видеокартах с разными шаблонами сглаживания. Видеокарта производит сглаживание кадра с некоторым шагом относительно изображения другой видеокарты. Затем полученные изображения смешиваются и выводятся. Таким образом достигается максимальные чёткость и детализованность изображения. Доступны следующие режимы сглаживания: 8x, 10x, 12x и 14x.

Аналог в nVidia SLI — SLI AA.

См. также

Ссылки

Литература

  • Алексей Горбунков, Николай Арсеньев. Двойной форсаж. Тестирование технологий CrossFire и SLI. Игромания № 3 (2007).
Графические технологии и продукция компании AMD (ATI)
Мульти-GPU ATI Multi Rendering · CrossFire X
Технологии GPU TruForm · HyperMemory · HyperZ · 3DC · SmoothVision · VideoShader · SmartShader · PowerPlay · AVIVO · UVD · ATI Hybrid Graphics (SurroundView, PowerXpress, Hybrid CrossFire X) · XGP · AMD Fusion · ATI Eyefinity
Рабочии станции и HPC FireGL · FireMV · FirePro 3D · FireStream(Close to Metal)
Драйверы и программы Catalyst · fglrx (Linux) · HydraVision · HLSL2GLSL · AMD Cinema 2.0
Мультимедия и КПК All-in-Wonder · Imageon · Xilleon
GPU для видеоприставок Flipper (GameCube) · Xenos (Xbox 360) · Hollywood (Wii)

Wikimedia Foundation . 2010 .

Смотреть что такое "ATI CrossFire" в других словарях:

ATI CrossFire — CrossFire (also CrossFire X after release of the Spider desktop platform on November 19, 2007) is a brand name for ATI Technologies multi GPU solution, which competes with Scalable Link Interface (SLI) from NVIDIA. The technology allows up to… … Wikipedia

ATI Crossfire — Als ATI Crossfire bezeichnet das Unternehmen AMD (früher ATI Technologies) eine Multi GPU Technik, um zwei Grafikkarten in einem PCI Express System gleichzeitig zu betreiben. Crossfire basiert dabei auf dem älteren ATI Multi Rendering und bringt… … Deutsch Wikipedia

ATI CrossFire — Este artículo o sección necesita ser wikificado con un formato acorde a las convenciones de estilo. Por favor, edítalo para que las cumpla. Mientras tanto, no elimines este aviso. También puedes ayudar wikificando otros artículos o cambiando este … Wikipedia Español

ATI CrossFire X — … Википедия

ATI Crossfire — … Википедия

ATI Technologies — Rechtsform Incorporated Gründung 1985 Auflösung … Deutsch Wikipedia

ATI Technologies — Inc. Tipo Subsidiaria NYSE: AMD … Wikipedia Español

Crossfire (GPU) — Saltar a navegación, búsqueda Logotipo de ATI Crossfire Crossfire es el nombre dado al sistema de doble GPU de ATI/AMD que fue diseñado como contrapartida al SLI de nVidia, pionera en los sistemas de GPU múltiples. Este sistema permite,… … Wikipedia Español

ATI Catalyst — ist ein Treiberpaket für die Radeon Grafikkarten der Firma ATI. Neben dem eigentlichen Treiber beinhaltet das Paket das Catalyst Control Center (CCC), welches zum Einstellen der Treiberoptionen dient. Der Catalyst wurde erstmals mit der Radeon… … Deutsch Wikipedia

ATI HydraVision — ATI HydraVision программа для тонкой настройки управления мониторами для видеокарт AMD Radeon, которая позволяет пользователю управлять выводом различных окон/приложений на два монитора. Также она обеспечивает поддержку нескольких… … Википедия

24 мая, в Москве, в самый разгар жаркой весны, сотрудники фирмы ATI провели конференцию, посвященную описанной в этой статье технологии, подробностям новой игровой приставки Xbox 360 и другим не менее полезным вещам. Было здорово, спасибо Николаю Радовскому и другим представителям компании за полезную информацию и очень компетентные ответы на вопросы!

А теперь, не мешкая, перейдем к сути статьи:

ATI CrossFire — так официально называется канадский ответ на NVIDIA SLI, о котором шептались и «подозревали» технологические форумы сети еще полгода назад. Есть ли отличия? Да, несомненно. Есть ли преимущества? Судя по всему, да, и весьма значительные. Через некоторое время мы опубликуем тесты и практические исследования аспектов качества, а пока исследуем теоретические и архитектурные стороны и попробуем спрогнозировать тенденции и результаты. Общая архитектура CrossFire

Основная цель технологии — организация совместной работы двух графических ускорителей над построением изображения. Причем, архитектура должна быть не только эффективной (высокий КПД, низкая стоимость дополнительных схем, доступность для простых частных покупателей и энтузиастов), но и удобной в использовании (совместимость с уже существующими программами и даже с уже существующими аппаратными решениями, прозрачность, простота и надежность). Требований очень много, и, забегая вперед, похвалим ATI за качественный и очень продуманный подход при решении этих задач. Итак, нам предложена вот такая архитектура:

Несколько ускорителей (в варианте для пользователей их два) формируют собственную часть изображения, и выводят её через TMDS трансмиттеры в общепринятом цифровом стандарте DVI. Затем информация попадает в «черный» (на схеме — красный) ящик под названием Composing Engine, устройство, которое собственно и осуществляет совмещение результатов работы ускорителей для получения финального изображения. На выходе из этого красного ящика — вновь стандартный цифровой DVI сигнал, но на этот раз — уже финального кадра, собранного из двух порций данных, рассчитанных обоими VPU. Для устранения проблем с синхронизацией, Composing Engine содержит собственную буферную память, что позволяет этому устройству накапливать данные асинхронно, и, затем, по мере готовности обоих ускорителей, формировать и выдавать результирующий кадр. Таким образом, четкая синхронизация работы VPU не требуется, достаточно двух фактов — каждый VPU должен знать, какую часть данных ему надо рассчитать, и каждый VPU должен закончить передачу рассчитанных данных в этот «красный ящик», Composing Engine. После этого будет осуществлена передача кадра на устройство вывода, в формате DVI или (если нам нужен аналоговый сигнал) на внешний графический DAC, преобразующий цифровой DVI поток в стандартный аналоговый VGA сигнал.

Читайте также:  Обман на авито при покупке

Теперь самый актуальный вопрос — как VPU будут делить между собой рассчитываемые данные? Небольшая теоретическая часть на эту тему:

Основные алгоритмы взаимодействия ускорителей

Можно легко выделить три основных алгоритма, применяемых в наше время для этой цели в различных потребительских и профессиональных решениях:

    Разделение экрана на несколько непересекающихся зон (Scissor, также известно как Slicing). Это решение используется в современной технологии NVIDIA SLI, и во многих специальных решениях, таких как симуляторы для обучения пилотов (несколько окон тренировочной установки, модели самолета), большие информационные мультиэкраны и т.д.

Для двух VPU будет происходить вертикальное разделение финального кадра на две зоны. Интересно, что граница зон не обязательно должна проходить по середине кадра и может выбираться динамически, исходя из сложности той или иной части изображения — грубо говоря, в верхней половине может оказаться меньше объектов, чем внизу (небо) и тогда один из ускорителей будет простаивать, что может быть скомпенсировано увеличением его зоны ответственности. Задача подобной динамической балансировки нетривиальна, и требует анализа сцены, что не всегда удобно. Этот метод хорош для сбалансированных по критерию геометрических вычислений / закраска приложений, так как в идеале (при правильном адаптивном делении кадра на зоны ответственности), позволит им поровну распределить и геометрическую и пиксельную нагрузку по двум ускорителям.

Построчное или шахматное или иное чередование рассчитываемых пикселей (Tiling) — самый удобный и прозрачный, с точки зрения организации, метод, когда ускорители рассчитывают соседние строчки (SLI от 3dfx, где чередовались четные и нечетные строки) или пиксели в шахматном порядке (фактически почти тоже самое) или соседние отсчеты для AA в рамках одного результирующего пикселя. Таким образом, нагрузка по закраске делится строго поровну, вне зависимости от конкретной сцены, а вот геометрическую нагрузку VPU приходится дублировать — оба ускорителя рассчитывают одни и те же геометрические данные. Получается, что в случае приложений, не упирающихся в геометрическую производительность ускорителя (а в наше время это практически все игровые приложения), этот метод может обеспечить серьезный прирост скорости закраски, вплоть до двукратного (если запас простаивающей геометрической производительности двукратный). Таким образом, мы распараллеливаем пиксельную работу поровну, имея близкий к 100% КПД, без каких-либо видимых проблем совместимости или сложностей в организации балансировки и разделения потока данных. Метод требует минимальных вмешательств в драйверы, прозрачен для приложений и выглядит наиболее оптимальным, сейчас, для игрового пользовательского рынка. Особенно, учитывая все большее число приложений с тяжелой пиксельной нагрузкой и шейдерными спецэффектами. Более того, по ходу дела, этот метод может быть использован для эффективного FSAA, основанного на усреднении отсчетов, рассчитанных разными ускорителями. Что в дополнение к MSAA, реализованному в каждом VPU, даст нам еще и суперсэмплинг (SSAA), способный решить некоторые проблемы не достаточно эффективно устраняемые MSAA.

  • Чередование рассчитываемых кадров (Alternate Frame Rendering) — методика знакомая нам еще по самому первому многочиповому решению ATI в пользовательской нише — RAGE Fury MAXX. Хороша для приложений, упирающихся в геометрическую производительность ускорителя и не критичных к плавности смены кадров, что, надо отметить, редкость в наше время в игровых приложениях, но может иметь место в DCC/CAD/CAM/CAE применениях (например, при интерактивном редактировании моделей в приложениях для создания реалистичной графики).
  • Итак, суммируем плюсы и минусы вышеописанных подходов:

    Метод

    Плюсы

    Минусы

    Scissor
    (Slicing)

    • Делит и геометрическую и пиксельную нагрузку
    • Высокая степень асинхронности работы VPU
    • Ускоритель полностью владеет своей подотчетной зоной изображения результата
    • Требует балансировки на лету зон для равномерного распределения нагрузки
    • Могут быть проблемы с AA на стыке зон
    • Требует заметного вмешательства в драйвер и потому высока вероятность неожиданной и неверной работы некоторых приложений


    • Делит пиксельную нагрузку ровно поровну
    • Очень точная балансировка нагрузки между VPU
    • Можно использовать для новых методик AA (SSAA)
    • Прозрачен для приложений и почти не требует модификации драйверов, мала вероятность неверной работы приложений
    • Не делит геометрическую нагрузку и потому требует существенного запаса в геометрической производительности
    • Требует достаточно синхронной работы ускорителей и соответственно отсутствия различия их скоростных и прочих характеристик

    Alternate Frame Rendering

    • Делит и пиксельную и геометрическую нагрузку, причем геометрия не дублируется по шине — разные ускорители получают разные наборы данных
    • Ускоритель полностью отвечает за свой кадр, никаких следов стыковки, даже в случае сложного постпроцессинга, никаких ограничений на метод построения кадра.
    • Неровное чередование кадров и распределение нагрузки
    • КПД сильно зависит от CPU и системы, а также от характера сцены и падает с ростом FPS
    • Проблема со значительной задержкой между кадром, который нам демонстрируется и кадром, который в данный момент строится.

    Какой из них избрали специалисты ATI? Оставайтесь с нами, об этом чуть позже. А пока перейдем к конкретике реализации CrossFire в «железе». Как же вышеописанный метод «красного ящика», объединяющего изображения, был исполнен ATI на практике? Вот так: Конкретика CrossFire

    Итак, у нас есть две карты, установленные в одной системе (требуется материнская плата CrossFire Edition), с двумя графическими PCI-Express слотами форм-фактора x16. Обычная карта ATI и специальная карта ATI с технологией CrossFire:

    Вот почему статья называется «Асимметричный ответ» 😉 Оказывается, инженеры ATI решили поместить описанный выше «красный ящик» (С Engine на схеме) на одну карту, «главную», и передавать на него данные со второй карты через обычный внешний DVI разъем. Тем самым, создав решение, совместимое с уже существующими картами, выпущенными до появления CrossFire! Разве это не здорово — если у вас уже есть PCI-Express карта ATI с DVI выходом, то вам достаточно докупить специальную CrossFire карту, соединить DVI выход старой карты с новой при помощи специального провода, который идет в комплекте. И ваша суперсистема готова. На выходе новой карты вы получите уже собранное Composing Engine, по результатам работы обоих ускорителей изображение, в DVI или аналоговом VGA формате.

    На карте с технологией CrossFire установлен специальный разъем, напоминающий DVI, но имеющий большее число контактов, на схеме он обозначен как DMS. Через этот разъем в карту попадает DVI сигнал с первой карты, через него же из карты выходят сигналы DVI и аналогового VGА результирующего изображения, собранного красным ящиком. Кроме того, на исходной карте остается незадействованным второй выход (DVI+VGA или только VGA), а также TV-Out, а на карте CrossFire — тоже есть второй DVI+VGA. Все эти выходы, не участвующие в совместном построении изображения, разумеется, могут быть использованы для дополнительных мониторов и других стандартных применений в «мирное», не игровое время, но на них естественно нельзя выводить совместное изображение, рассчитанное обоими ускорителями в режиме CrossFire — оно поступает только на выходы разъема DMS.

    Читайте также:  Программа для усиления микрофона windows 7

    А теперь самый интересный вопрос. Внимание, знатоки. Какой алгоритм разбиения изображения был выбран ATI для реализации в своем «красном ящике»?

    Правильный ответ — любой из трех описанных выше!

    Физически, на CrossFire карте «красный ящик» представляет собою не специальный чип с жестко запрограммированным в него алгоритмом работы, а небольшой универсальный чип с программируемым массивом логических вентилей. Этот небольшой чип содержит в себе гибко настраиваемую схему логических элементов и буферную память для хранения промежуточных результатов, а алгоритм его работы задается драйверами, загружающими в него соответствующую схему связей. На данный момент ATI реализовали все три выше описанные методики, но это не значит, что в будущем не появятся новые, улучшенные или гибридные решения по разделению нагрузки на два ускорителя. Все, что будет необходимо — просто обновить драйверы. Не удержусь и второй раз похвалю инженеров ATI за элегантное решение — мало того, что такой подход существенно снизил стоимость разработки и внедрения CrossFire, он позволил выбирать для каждого конкретного применения режим, оптимальный с точки зрения КПД (из доступных) и, тем самым, во многом застраховал наши инвестиции в мультичиповое решение от капризов конкретных игр и приложений.

    Итак, задействуя CrossFire:

    • Мы можем использовать старую карту, уже установленную в нашей системе * , надо купить вторую CrossFire карту и системную плату с двумя графическими слотами PCI-Express (если такой еще нет).
    • Мы можем выбирать для каждого конкретного приложения оптимальный метод взаимодействия ускорителей при построении изображения. Причем, мы можем предоставить этот выбор драйверу, и тогда он будет сверяться со списком заранее проверенных ATI приложений, для которых уже подобрана оптимальная установка, или установит самый надежный с точки зрения прозрачности для приложения Tiling метод, если приложение ему не известно. А можем выбрать метод самостоятельно, поэкспериментировав с результатами в конкретном приложении, заботясь о КПД или о максимальном качестве изображения.
    • Мы можем получить, в будущем, новые режимы и методы взаимодействия.
    • Мы можем на лету, не перезагружая систему, включать и выключать CrossFire, а также менять режимы его работы.
    • У нас появляются новые методы AA — когда к 2, 4 или 6 семпловому MSAA в каждом чипе, добавляется еще и 2хSSAA — усреднение результатов в Composing Engine. В итоге получается уже знакомая нам по продуктам NVIDIA гибридная формула. В случае ATI, доступны два новых режима (пока) — SS2х(MS4x) SS2х(MS6х), которые почему-то названы ATI «10хAA» и «14хАА», что не совсем точно 😉 скорее, надо было назвать их «2*4хAA» и «2*6xAA». Разумеется, в таких режимах устанавливается различное расположение отсчетов MSAA для первого и второго ускорителя, только тогда это сглаживание будет иметь смысл. Но, как мы знаем, у чипов ATI паттерн отсчетов гибко задается на сетке 4х4, и таким образом мы можем разместить там два набора по 6 отсчетов так, чтобы они не пересекались.
    • Мы можем использовать совместно карты разных производителей (например, ASUS и Sapphire в одной упряжке)!

    * При условии, что у вас есть системная плата CrossFire Edition

    Какие конкретные ограничения есть у этой технологии на данный момент:

    • Технология будет доступна (вначале) только для карт серии X800 и X850. Причем для обычных карт серии X800 необходима X800 карта с технологией CrossFire, а для карты X850 соответствующая CrossFire карта серии X850.
    • Любые карты семейства можно сочетать (любая X800 с X800 CrossFire и любая X850 с X850 CrossFire), но число конвейеров будет ограничено до минимального общего — то есть, если одна из карт 12 конвейерная, то и вторая, даже будучи 16 конвейерной, будет работать в режиме CrossFire как 12 конвейерная. Это сделано для балансировки производительности.
    • Технология совместного рендеринга работает только на один монитор.
    • Пока что объявлена гарантированная (!) совместимость только материнскими платами на чипсетах ATI серии Xpress 200 с приставкой CrossFire Edition для процессоров Intel и AMD, однако по мере тестирования и обкатки будут анонсироваться и совместимые платы на чипсетах других производителей — никаких принципиальных проблем в такой совместной работе нет, но могут возникать конкретные несовместимости.

    Какие перспективы есть у этой технологии на будущее:

    • Ее очень легко адаптировать к другим существующим (X700 и иже) и будущим решениям ATI. Фактически, любая новая флагманская карта ATI может выходить сразу и в исполнении с этой технологией
    • Будут проверены и признаны совместимыми новые системные платы с двумя графическими слотами, в том числе на чипсетах Intel и, возможно, даже на чипсетах NVIDIA.
    • Позже эта технология может быть масштабирована дальше, не секрет, что по аналогии с процессорами через пару лет могут появиться многоядерные или многочиповые ускорители в одном корпусе, и тогда станут возможными схемы 2*2 (две карты с двумя ускорителями на каждой).

    Цены, даты, прогнозы

    Теперь немного совсем приземленной конкретики. Для начала цены и доступность:

    Причем, на прилавках магазинов CrossFire карты будут уже в конце июня, начале июля.

    Вот такие данные по производительности решений с двумя картами, CrossFire X850 XT в сравнении с NVIDIA SLI 6800 Ultra приводит ATI (внимание: в обоих случаях задействованы две карты):

    Для разрешения 1600х1200 (4xAA 8xAF)

    Воздержимся от комментариев до получения собственных результатов скорости и качества работы этой технологии, а пока же отметим, что SLI работает лишь с ограниченным (причем сильно ограниченным) числом игр, в чем очень заметно проигрывает CrossFire, и, требует покупки двух новых карт, что также не может считаться большим плюсом по сравнению с CrossFire. Которая (потенциально) применима к практически миллиону уже существующих владельцев продуктов на базе всех карт семейства X800 и X850, без необходимости продавать свою старую карту.

    Два самых актуальных вопроса: удастся ли ATI удержать это технологическое первенство? Ведь следующее поколение продуктов NVIDIA может взять на вооружение лучшие находки канадских специалистов в том или ином виде. И почему технология называется CrossFire — не имелась ли в виду одноименная машина фирмы Chrysler ? 😉

    Разумеется, реально очень многое будет зависеть от соотношения цена / производительность в конкретных играх. А также от наличия проблем с качеством изображения и совместимостью. Все эти аспекты мы исследуем в ближайшее время, а пока же подведем промежуточный итог:

    Инженеры ATI создали очень выгодную, гибкую и удобную архитектуру многочипового рендеринга, нацеленную на конечных пользователей и игровые приложения. На бумаге перспективы CrossFire выглядят более заманчиво, чем NVIDIA SLI, а архитектурное решение можно (и нужно) признать более изящным и продуманным. В активе и совместимость с уже существующими картами и работа со всеми приложениями, и гибкий выбор метода совместной работы ускорителей. Разумеется, подобная технология нацелена на достаточно узкую нишу энтузиастов, и не принесет компании особенной сверхприбыли, но не следует забывать, что лидерство в абсолютном зачете, которое может обеспечить CrossFire, несомненно, скажется на продажах mainstream продукции ATI в лучшую сторону, а технологическое лидерство в такой области — не менее осязаемый и ценный вклад в имидж компании.

    Ссылка на основную публикацию
    Что означает охват в статистике вконтакте
    Что такое охват подписчиков во Вконтакте Как посмотреть охват? Для сообщества Перейдите в сообщество, на панели управления нажмите кнопку «Статистика»,...
    Что делать если взломали сим карту
    Подавляющее большинство современных телефонов оборудовано лотком под сим-карту, вытащить который очень легко с помощью скрепки или иглы. Какие-то телефоны после...
    Что делать если забыл название игры
    В сообществе Лига Геймеров очень часто всплывают посты "Помогите найти игру". Там их не очень жалуют. Для этого и создано...
    Что означает ошибка esp
    Однажды ни с того ни с сего во время достаточно спокойной езды загорелась ошибка: "Сервис: ESP", затем следом появилось сообщение...
    Adblock detector