Частная производная сложной функции нескольких переменных

Частная производная сложной функции нескольких переменных

Пусть z=ƒ(х;у) — функция двух переменных х и у, каждая из которых является функцией независимой переменной t: х = x(t), у = y(t). В этом случае функция z = f(x(t);y(t)) является сложной функцией одной независимой переменной t; переменные х и у — промежуточные переменные.

Теорема 44.4. Если z = ƒ(х;у) — дифференцируемая в точке М(х;у) є D функция и х = x(t) и у = y(t) — дифференцируемые функции независимой переменной t, то производная сложной функции z(t) = f(x(t);y(t)) вычисляется по формуле

Так как по условию функция z — ƒ(х;у) дифференцируема в точке М(х; у), то ее полное приращение можно представить в виде

где а→0, β→0 при Δх→0, Δу→0 (см. п. 44.3). Разделим выражение Δz на Δt и перейдем к пределу при Δt→0. Тогда Δх→0 и Δу→0 в силу непрерывности функций х = x(t) и у = y(t) (по условию теоремы — они дифференцируемые). Получаем:

Частный случай: z=ƒ(х;у), где у=у(х), т. е. z=ƒ(х;у(х)) — сложная функция одной независимой переменной х. Этот случай сводится к предыдущему, причем роль переменной t играет х. Согласно формуле (44.8) имеем:

Формула (44.9) носит название формулы полной производной.

Общий случай: z=ƒ(х;у), где x=x(u;v), у=у(u;v). Тогда z= f(x(u;v);y(u;v)) — сложная функция независимых переменных u и v. Ее частные производные можно найти, используя формулу (44.8) следующим образом. Зафиксировав v, заменяем в ней соответствующими частными производными

Аналогично получаем:

Таким образом, производная сложной функции (z) по каждой независимой переменной (u и v) равна сумме произведений частных производных этой функции (z) по ее промежуточным переменным (х и у) на их производные по соответствующей независимой переменной (u и v).

Пример 44.5. Найти если z=ln(x 2 +у 2 ), х=u•v, у=u/v.

Решение: Найдем dz/du (dz/dv — самостоятельно), используя формулу (44.10):

Упростим правую часть полученного равенства:

т. е.

40. Частные производные и полный дифференциал функции нескольких переменных.

Пусть задана функция z = ƒ (х; у). Так как х и у — независимые переменные, то одна из них может изменяться, а другая сохранять свое значение. Дадим независимой переменной х приращение Δх, сохраняя значение у неизменным. Тогда z получит приращение, которое называется частным приращением z по х и обозначается ∆хz. Итак,

Читайте также:  Перенос элемента на новую строку css

Аналогично получаем частное приращение z по у:

Полное приращение Δz функции z определяется равенством

Δz = ƒ(х + Δх;у + Δу)- ƒ(х; у).

Если существует предел

то он называется частной производной функции z = ƒ (х; у) в точке М(х;у) по переменной х и обозначается одним из символов:

Частные производные по х в точке М) обычно обозначают символами

Аналогичноопределяется и обозначается частная производная от z=ƒ(х;у) по переменной у:

Таким образом, частная производная функции нескольких (двух, трех и больше) переменных определяется как производная функции одной из этих переменных при условии постоянства значений остальных независимых переменных. Поэтому частные производные функции ƒ(х;у) находят по формулам и правилам вычисления производных функции одной переменной (при этом соответственно х или у считается постоянной величиной).

Пример 44.1. Найти частные производные функции z = 2у + е х2-у +1 . Решение:

Геометрический смысл частных производных функции двух переменных

Графиком функции z= ƒ (х; у) является некоторая поверхность (см. п. 12.1). График функции z = ƒ (х; у) есть линия пересечения этой поверхности с плоскостью у = уо. Исходя из геометрического смысла производной для функции одной переменной (см. п. 20.2), заключаем, что ƒ’x(хоо) = tg а, где а — угол между осью Ох и касательной, проведенной к кривой z = ƒ (х; у) в точке Мо(хо;уо; ƒ(хо;уо)) (см. рис. 208).

Функция Z=f(x,y) называется дифференцируемой в точке P(x,y), если ее полное приращение ΔZ можно представить в виде Δz = A∙Δx+B∙Δy+ω(Δx,Δy), где Δx и Δy – любые приращения соответствующих аргументов x и y в некоторой окрестности точки Р, А и В – постоянные (не зависят от Δx,Δy),

ω(Δx,Δy) – бесконечно малое более высокого порядка, чем расстояние:

Если функция дифференцируема в точке, то ее полное приращение в этой точке состоит из двух частей :

1. Главной части приращения функции A∙Δx+B∙Δy – линейное относительно Δx,Δy

2. И нелинейное ω(Δx,Δy) – бесконечно малое более высокого порядка, чем главная часть приращения.

Главная часть приращения функции – линейная относительно Δx,Δy называется полным дифференциалом этой функции и обозначается: Δz = A∙Δx+B∙Δy, Δx=dx и Δy=dy или полный дифференциал функции двух переменных:

Дифференциал отображения. Дифференциал и производная числовой функции одной переменной. Таблица производных. Дифференцируемость.

Читайте также:  Как по айди узнать айпи адрес

Дифференциалом отображения в точке называют линейный оператор такой, что выполняется условие

Отображение называется дифференцируемым в точке если определён дифференциал .

Определение.Функция y=f(x) называется дифференцируемой в точке х, если ее приращение Δу в этой точке можно представить в виде

,

где А – некоторое число, не зависящее от , а α( ) – функция аргумента , являющаяся бесконечно малой при →0, т.е.

Выясним теперь связь между дифференцируемостью в точке и существованием производной в той же точке.

Теорема. Для того чтобы функция f(x) была дифференцируемой в данной точке х , необходимо и достаточно, чтобы она имела в этой точке конечную производную.

Пусть задана сложная функция с двумя промежуточными и одним основным аргументом z=f(x;y), x=x(t), y=y(t). Требуется вычислить производную zt . отметим. Что это полная производная, т.к. фактически это функция одного переменного. Пусть переменная t получила приращение t. Тогда соответствующие приращения получат и функции х и у, зависяшие от t, а вместе с ними и функция z получит полное приращение z= fx(х;y)х+ fу(х;y)у. Разделим полученное приращение на t и вычислим предел этого отношения при t0. Тогда получим ft = fx xt+ fу yt -формула для вычисления производной сложной функции данного типа.

=+ и =+ . В последних записях отметим справедливость предупреждения о том, что частные производные – это не дроби, а единые символы. В противном случае полсе сокращения справа было бы получено две частные призводные , равные одной производной слева!

Если от функции нескольких переменных взяты частные производные, то они сами будут функциями от тех же аргументов. Естественно попытаться поставить вопрос о производных от частных производных.

Определение. Частная производная от частной производной порядка n-1 от данной функции называется частной производной порядка n от данной функции.

12.6. Производные и дифференциалы высших порядков

Аналогично определяются частные и полные дифференциалы высшего порядка. Соответствующим образов выглядят символические обозначения частных производных и дифференциалов высшего порядка: или или f’’xx — все это производные 2-го порядка от функции z=f(x;y;…) по переменной х. Читается это так “частная производная второго порядка от функции f (или z) по переменной х дважды”. Естественно, что частные производные можно брать по всем аргумента.

Читайте также:  Почему телефон сам включает wifi

Справедлива теорема – если f(x;y) имеет всевозможные частные производные до порядка n-1 включительно и имеет непрерывные частные производные порядка n , то значение частной производной порядка n не зависит от последовательности, в которой для ее вычисления проводились дифференцирования по переменным, а определяется только общим числом дифференцирований по каждому аргументу.

К примеру, имеем естественные равенства в условиях данной теоремы :

====…

12.7. Производные неявных функций

Ранее было введено понятие неявной функции одного аргумента в неявном виде, т.е. уравнением F(x;y)=0. Однако там же указывалось, что не всякое уравнение F(x;y)=0 определяет функцию y=f(x).

Теорема (достаточные условия существования неявной функции).

Пусть : F(x;y) определена и непрерывна как функция двух переменных вместе со своими частными производными в некоторой окрестности точки Мо(хоо);

В точке Мо Fxоо) не равна нулю; тогда: в некотором прямоугольнике D уравнение F(x;y)=0 определяет однозначную y=f(x);

При х= хо функция y=f(x) принимает значение уо ;

На промежутке функция y=f(x) непрерывна и имеет производную, которую вычисляют по формуле y`=.

Комментарий. Следует заметить, что фактической функции y=f(x) можно и не получить вообще, т.к. не всякое уравнение F(x;y)=0 можно решить относительно у. И все же производную вычислить можно.

Назначение сервиса . Сервис используется для нахождения частных производных функции (см. пример). Решение производится в онлайн режиме и оформляется в формате Word .

  • Решение онлайн
  • Видеоинструкция
  • Также решают

Правила ввода функции, заданной в явном виде

  1. Примеры
    x 2 +xy ≡ x^2+x*y .
    cos 2 (2x+y) ≡ (cos(2*x+y))^2
    ≡ (x-y)^(2/3)

Правила ввода функции, заданной в неявном виде

  1. Все переменные выражаются через x,y,z
  2. Примеры
    ≡ x^2/(z+y)
    cos 2 (2x+zy) ≡ (cos(2*x+z*y))^2
    ≡ z+(x-y)^(2/3)

Частные производные функции нескольких переменных

Пример 1 . z=2x 5 +3x 2 y+y 2 –4x+5y-1

Пример 2 . Найти частные производные функции z = f(x;y) в точке A(x;y).

Находим частные производные:


Найдем частные производные в точке А(1;1)


Находим вторые частные производные:


Найдем смешанные частные производные:

Ссылка на основную публикацию
Футбольный менеджер без интернета
Да, уже четыре года назад Испания выиграла Евро 2012. С того времени много воды утекло и теперь у других команд...
Форд экоспорт белый фото
Компания Форд славится тем, что каждое обновление их машин несет в себе кучу перемен. Не стал исключением и недорогой городской...
Форм факторы корпусов пк размеры
Главная FAQ Железо Типы компьютерных корпусов Типы компьютерных корпусов Говоря слово "компьютер" многие подразумевают системный блок компьютера, и в принципе...
Футбольный менеджер с реальными командами
Бесплатная онлайн игра. Только в нашем футбольном менеджере игры проходят в реальном времени и можно менять тактику непосредственно во время...
Adblock detector